Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) = √4. = 2(1 + 6x+ ).
Tại x = -√2, giá trị của là 2(1 + 6(-√2) + 9(
= 2(1 - 6√2 +9.2)
= 2(19 - 6√2) ≈ 21,03.
b) =
= √9.. = 3.│a│.│b - 2│.
Tại a = -2 và b = -√3, giá trị của biểu thức là 3.│-2│.│-√3 - 2│= 3.2.(√3 + 2) = 6(√3 + 2) ≈ 22,392.
a) = √4. = 2(1 + 6x+ ).
Tại x = -√2, giá trị của là 2(1 + 6(-√2) + 9(
= 2(1 - 6√2 +9.2)
= 2(19 - 6√2) ≈ 21,03.
b) =
= √9.. = 3.│a│.│b - 2│.
Tại a = -2 và b = -√3, giá trị của biểu thức là 3.│-2│.│-√3 - 2│= 3.2.(√3 + 2) = 6(√3 + 2) ≈ 22,392.
a)\(A=\sqrt{2^2\left(1+6x+9x^2\right)^2}=2\left(1+6x+9x^2\right)\)
\(=2\left(3x+1\right)^2\).Tại \(x=-\sqrt{2}\) ta có:
\(=2\cdot\left(3\cdot-\sqrt{2}+1\right)^2=2\cdot\left(1-3\sqrt{2}\right)^2=2\cdot19-6\sqrt{2}=38-12\sqrt{2}\)
b)\(B=\sqrt{9a^2\left(b^2+4-4b\right)}=\sqrt{3^2a^2\left(b^2-2\cdot2\cdot b+2^2\right)}\)
\(=\sqrt{\left(3a\right)^2\left(b-2\right)^2}\)
\(=3\cdot a\cdot\left(b-2\right)\).Tại \(a=-2;b=-\sqrt{3}\) ta có:
\(B=3\cdot\left(-2\right)\cdot\left(-\sqrt{3}-2\right)=\left(-6\right)\cdot\left(-2-\sqrt{3}\right)=12+6\sqrt{3}\)
a) \(\sqrt{4\left(1+6x+9x^2\right)^2}=\sqrt{2^2.\left(3x+1\right)^4}=2.\left(3x+1\right)^2\)
Thay x vào và tính :)
b) \(\sqrt{9a^2\left(b^2-4b+4\right)}=\sqrt{\left(3a\right)^2.\left(b-2\right)^2}=\left|3a\right|.\left|b-2\right|\)
Thay a,b vào và tính :)
Hai bài này áp dụng hằng đẳng thức \(a^2-b^2=\left(a-b\right)\left(a+b\right)\) bạn nhé
a)
\(\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)\)
\(=2^2-\sqrt{3}^2\)
\(=4-3\)
\(=1\)
b)
Hai số nghịch đảo nhau là 2 số có tích của chúng bằng 1
Ví dụ
\(\frac{a}{b}\) và \(\frac{b}{a}\) ( hai số nghịch đảo )
\(\frac{a}{b}.\frac{b}{a}=1\)
Ta có
\(\left(\sqrt{2006}-\sqrt{2005}\right)\left(\sqrt{2006}+\sqrt{2005}\right)\)
\(=\sqrt{2006}^2-\sqrt{2005}^2\)
\(=2006-2005\)
\(=1\)
=> Đpcm
a, \(\sqrt{6x^2-6x\sqrt{6}+9}\)
\(=\sqrt{\left(x\sqrt{6}+3\right)^2}\)
\(=x\sqrt{6}+3\)
Thay \(x=\sqrt{\dfrac{3}{2}}-\sqrt{\dfrac{2}{3}}\)vào biểu thức ta có:
\(\sqrt{6}\left(\sqrt{\dfrac{3}{2}}-\sqrt{\dfrac{2}{3}}\right)+3\)
\(=\sqrt{9}-\sqrt{4}+3\)
\(=3-2+3=4\)
b, \(\sqrt{9\left(1-6x+9x^2\right)}\)
\(=\sqrt{9\left(1-3x\right)^2}\)
\(=3\left(1-3x\right)\)
Thay \(x=-\sqrt{2}\) vào biểu thức ta có:
\(3\left(1-3.\left(-\sqrt{2}\right)\right)\)
\(=3\left(1+3\sqrt{2}\right)\)
\(=3+9\sqrt{2}\)
c, \(\sqrt{1-6a+9a^2}+3a\)
\(=\sqrt{\left(1-3a\right)^2}+3a\)
\(=1-3a+3a=1\)
Nó bằng 1 rồi nên khỏi thay nhé
a) \(\sqrt{4\left(1+6x+9x^2\right)^2}\) = \(\sqrt{\left(2\left(1+6x+9x^2\right)\right)^2}\)
= \(\sqrt{\left(2\left(1-6\sqrt{2}+18\right)\right)^2}\) = \(2\left(1-6\sqrt{2}+18\right)\) = \(2\left(3\sqrt{2}-1\right)^2\)
= \(21,029\)
b) \(\sqrt{9a^2\left(b^2+4-4b\right)}\) = \(\sqrt{\left(3a\left(b-2\right)\right)^2}\) = \(\sqrt{\left(-6\left(-\sqrt{3}-2\right)\right)^2}\)
= \(\sqrt{\left(6\sqrt{3}+12\right)^2}\) = \(6\sqrt{3}+12\) = \(22,392\)