Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: x>=1 và x<>2
\(A=\dfrac{\sqrt{x-1}+\left|\sqrt{x-1}-1\right|+1}{\left|x-2\right|}\)
Trường hợp 1: \(\sqrt{x-1}>1\Leftrightarrow x>2\)
=>\(A=\dfrac{2\sqrt{x-1}}{\left|x-2\right|}\)
Trường hợp 2: 1<x<2
\(A=\dfrac{2}{\left|x-2\right|}\)
a)ĐKXĐ:x>=0;x khác 9
A=[\(\frac{\sqrt{x}}{\sqrt{x}-3}\) - \(\frac{3\sqrt{x}+9}{x-9}\)+ \(\frac{2\sqrt{x}}{\sqrt{x}+3}\)] \(\div\) [\(\frac{2\sqrt{x}-2}{\sqrt{x}-3}\)-1]
A=[\(\frac{\sqrt{x}\left(\sqrt{x}-3\right)-3\sqrt{x}-9+2\sqrt{x}\left(\sqrt{x}-3\right)}{x-9}\)] \(\div\) [\(\frac{\left(2\sqrt{x}-2\right)\left(\sqrt{x}+3\right)-x+9}{x-9}\)]
A=[\(\frac{3x-12\sqrt{x}-9}{x-9}\)].[\(\frac{x-9}{x-4\sqrt{x}+3}\)]
A=\(\frac{3x-12\sqrt{x}-9}{x-4\sqrt{x}+3}\)
Bài 1:
\(=\dfrac{x-2+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+2\right)}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}-1}=\dfrac{\sqrt{x}+1}{\sqrt{x}}\)
a: \(A=\left(\dfrac{\sqrt{3}\left(x-\sqrt{3}\right)+3}{\left(x-\sqrt{3}\right)\left(x^2+x\sqrt{3}+3\right)}\right)\cdot\dfrac{x^2+3+x\sqrt{3}}{x\sqrt{3}}\)
\(=\dfrac{x\sqrt{3}}{\left(x-\sqrt{3}\right)\left(x^2+x\sqrt{3}+3\right)}\cdot\dfrac{x^2+x\sqrt{3}+3}{x\sqrt{3}}\)
\(=\dfrac{1}{x-\sqrt{3}}\)
b: \(B=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{x-\sqrt{x}+1}+x+1\)
\(=x-\sqrt{x}-x-\sqrt{x}+x+1\)
\(=x-2\sqrt{x}+1\)
c: \(C=\left(\dfrac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}-\dfrac{\sqrt{x}-2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\cdot\dfrac{x\left(\sqrt{x}+1\right)-\left(\sqrt{x}+1\right)}{\sqrt{x}}\)
\(=\dfrac{x+\sqrt{x}-2-\left(x-\sqrt{x}-2\right)}{\left(\sqrt{x}+1\right)^2\cdot\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}{\sqrt{x}}\)
\(=\dfrac{2\sqrt{x}}{\sqrt{x}}=2\)
a, \(x^2y^2.\sqrt{\dfrac{9}{x^2y^4}}=x^2y^2.\dfrac{3}{xy^2}=3x\)
b, \(\sqrt{\dfrac{x^2-6x+9}{x-3}}=\sqrt{\dfrac{\left(x-3\right)^2}{x-3}}=\sqrt{x-3}\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x}=a\\\sqrt{y}=b\end{matrix}\right.\), ta có:
\(A=\left[\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\times\dfrac{2}{a+b}+\dfrac{1}{a^2}+\dfrac{1}{b^2}\right]\)\(\times\dfrac{a^3+ab^2+a^2b+b^3}{ab^3+a^3b}\)
\(=\left(\dfrac{b+a}{ab}\times\dfrac{2}{a+b}+\dfrac{b^2+a^2}{a^2b^2}\right)\)\(\times\dfrac{a^2\left(a+b\right)+b^2\left(a+b\right)}{ab\left(a^2+b^2\right)}\)
\(=\dfrac{2ab+b^2+a^2}{a^2b^2}\times\dfrac{\left(a+b\right)\left(a^2+b^2\right)}{ab\left(b^2+a^2\right)}\)
\(=\dfrac{\left(a+b\right)^3}{a^3b^3}\)
\(=\dfrac{\left(\sqrt{x}+\sqrt{y}\right)^3}{\sqrt{\left(xy\right)^3}}\)