\(\sqrt{6-4\sqrt{2}}\)

 

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 8 2020

\(=\sqrt{4+2-4\sqrt{2}}\)

\(=\sqrt{2^2-2.2.\sqrt{2}+\left(\sqrt{2}\right)^2}\)

\(=\sqrt{\left(2-\sqrt{2}\right)^2}\)

\(=2-\sqrt{2}\)

21 tháng 8 2020

\(\sqrt{6-4\sqrt{2}}\)

\(=\sqrt{2-4\sqrt{2}+4}\)

\(=\sqrt{\left(\sqrt{2}\right)^2-2\cdot2\cdot\sqrt{2}+2^2}\)

\(=\sqrt{\left(\sqrt{2}-2\right)^2}\)

\(=\left|\sqrt{2}-2\right|\)

\(=-\left(\sqrt{2}-2\right)=2-\sqrt{2}\)( vì \(\sqrt{2}< 2\))

7 tháng 8 2020

\(A=\sqrt{6-2\sqrt{5}}-\sqrt{6+2\sqrt{5}}\)

\(A=\sqrt{\left(\sqrt{5}-1\right)^2}-\sqrt{\left(\sqrt{5}+1\right)^2}\)

\(A=\sqrt{5}-1-\sqrt{5}-1\)

\(A=-2\)

\(B=\sqrt{9+4\sqrt{5}}-\sqrt{9-4\sqrt{5}}\)

\(B=\sqrt{\left(\sqrt{5}+2\right)^2}-\sqrt{\left(\sqrt{5}-2\right)^2}\)

\(B=\sqrt{5}+2-\sqrt{5}+2\)

\(B=4\)

Sửa đề :

\(C=\sqrt{14-6\sqrt{5}}-\sqrt{14+6\sqrt{5}}\)

\(C=\sqrt{\left(3-\sqrt{5}\right)^2}-\sqrt{\left(3+\sqrt{5}\right)^2}\)

\(C=3-\sqrt{5}-3-\sqrt{5}\)

\(C=-2\sqrt{5}\)

6 tháng 8 2017

a, Đặt biểu thức là A 

<=>\(\sqrt{2}\)A = \(\sqrt{4+2\sqrt{3}}\)- 2 . \(\sqrt{3}\)+1

\(\sqrt{\left(\sqrt{3}+1\right)^2}\) - 2.\(\sqrt{3}\)+1 = \(\sqrt{3}\)+ 1 - \(2\sqrt{3}\) + 1 = 2-\(\sqrt{3}\)

6 tháng 8 2017

Từ đó suy ra A

13 tháng 7 2017

\(\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{16}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{4}+\sqrt{4}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{4}+\sqrt{4}+\sqrt{6}+\sqrt{8}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=\dfrac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)+\sqrt{2}\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=\dfrac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)\left(1+\sqrt{2}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=1+\sqrt{2}\)

6 tháng 8 2020

\(A=\sqrt{6-2\sqrt{5}}-\sqrt{6+2\sqrt{5}}\)

\(A=\sqrt{5-2\sqrt{5}+1}-\sqrt{5+2\sqrt{5}+1}\)

\(A=\sqrt{\left(\sqrt{5}-1\right)^2}-\sqrt{\left(\sqrt{5}+1\right)^2}\)

\(A=\sqrt{5}-1-\sqrt{5}-1\)

\(A=-2\)

     \(B=\sqrt{9+4\sqrt{5}}-\sqrt{9-4\sqrt{5}}\)

\(B=\sqrt{5+4\sqrt{5}+4}-\sqrt{5-4\sqrt{5}+4}\)

\(B=\sqrt{\left(\sqrt{5}+2\right)^2}-\sqrt{\left(\sqrt{5}-2\right)^2}\)

\(B=\sqrt{5}+2-\sqrt{5}+2\)

\(B=4\)

Học tốt 

6 tháng 8 2020

Bài làm:

a) \(A=\sqrt{6-2\sqrt{5}}-\sqrt{6+2\sqrt{5}}\)

\(A=\sqrt{5-2\sqrt{5}+1}-\sqrt{5+2\sqrt{5}+1}\)

\(A=\sqrt{\left(\sqrt{5}-1\right)^2}-\sqrt{\left(\sqrt{5}+1\right)^2}\)

\(A=\sqrt{5}-1-\sqrt{5}-1=-2\)

b) \(B=\sqrt{9+4\sqrt{5}}-\sqrt{9-4\sqrt{5}}\)

\(B=\sqrt{4+4\sqrt{5}+5}-\sqrt{4-4\sqrt{5}+5}\)

\(B=\sqrt{\left(2+\sqrt{5}\right)^2}-\sqrt{\left(2-\sqrt{5}\right)^2}\)

\(B=2+\sqrt{5}-\sqrt{5}+2\)

\(B=4\)

20 tháng 7 2016

\(\frac{\sqrt{9-4\sqrt{5}}}{2-\sqrt{5}}\)

\(\frac{\sqrt{2^2-2\sqrt{5}2+\sqrt{5^2}}}{2-\sqrt{5}}\)

\(\frac{\sqrt{\left(2-\sqrt{5}\right)^2}}{2-\sqrt{5}}\)

\(\frac{\sqrt{5}-2}{2-\sqrt{5}}\)

= -1

Chúc bạn làm bài tốt :)

28 tháng 10 2020

a) \(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}+\sqrt{2}\)

\(=\frac{\sqrt{2\left(4-\sqrt{7}\right)}-\sqrt{2\left(4+\sqrt{7}\right)}+2}{\sqrt{2}}\)

\(=\frac{\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}+2}{\sqrt{2}}\)

\(=\frac{\sqrt{7-2\sqrt{7}+1}-\sqrt{7+2\sqrt{7}+1}+2}{\sqrt{2}}\)

\(=\frac{\sqrt{\left(\sqrt{7}-1\right)^2}-\sqrt{\left(\sqrt{7}+1\right)^2}+2}{\sqrt{2}}\)

\(=\frac{\left|\sqrt{7}-1\right|-\left|\sqrt{7}+1\right|+2}{\sqrt{2}}=\frac{\left(\sqrt{7}-1\right)-\left(\sqrt{7}+1\right)+2}{\sqrt{2}}\)

\(=\frac{\sqrt{7}-1-\sqrt{7}-1+2}{\sqrt{2}}=\frac{0}{\sqrt{2}}=0\)

b) \(\sqrt{6+\sqrt{11}}-\sqrt{6-\sqrt{11}}+3\sqrt{2}\)

\(=\frac{\sqrt{2\left(6+\sqrt{11}\right)}-\sqrt{2\left(6-\sqrt{11}\right)}+3.2}{\sqrt{2}}\)

\(=\frac{\sqrt{12+2\sqrt{11}}-\sqrt{12-2\sqrt{11}}+6}{\sqrt{2}}\)

\(=\frac{\sqrt{11+2\sqrt{11}+1}-\sqrt{11-2\sqrt{11}+1}+6}{\sqrt{2}}\)

\(=\frac{\sqrt{\left(\sqrt{11}+1\right)^2}-\sqrt{\left(\sqrt{11}-1\right)^2}+6}{\sqrt{2}}\)

\(=\frac{\left|\sqrt{11}+1\right|-\left|\sqrt{11}-1\right|+6}{\sqrt{2}}\)

\(=\frac{\left(\sqrt{11}+1\right)-\left(\sqrt{11}-1\right)+6}{\sqrt{2}}\)

\(=\frac{\sqrt{11}+1-\sqrt{11}+1+6}{\sqrt{2}}=\frac{8}{\sqrt{2}}=4\sqrt{2}\)

12 tháng 10 2016

Ta có \(M=\sqrt{6+2\sqrt{4-\sqrt{12}}}=\sqrt{6+2\sqrt{4-2\sqrt{3}}}\)

\(=\sqrt{6+2\left(\sqrt{3}-1\right)}=\sqrt{4+2\sqrt{3}}\)

\(=\sqrt{3}+1\)

\(N=\sqrt{6-2\sqrt{4+\sqrt{12}}}=\sqrt{6-2\sqrt{4+2\sqrt{3}}}\)

\(=\sqrt{6-2\left(\sqrt{3}+1\right)}=\sqrt{4-2\sqrt{3}}\)

\(=\sqrt{3}-1\)

\(M.N=\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)=2\)

\(M-N=\sqrt{3}+1-\sqrt{3}+1=2\)

\(\Rightarrow M.N=M-N\)