K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 8 2020

\(=\sqrt{4+2-4\sqrt{2}}\)

\(=\sqrt{2^2-2.2.\sqrt{2}+\left(\sqrt{2}\right)^2}\)

\(=\sqrt{\left(2-\sqrt{2}\right)^2}\)

\(=2-\sqrt{2}\)

21 tháng 8 2020

\(\sqrt{6-4\sqrt{2}}\)

\(=\sqrt{2-4\sqrt{2}+4}\)

\(=\sqrt{\left(\sqrt{2}\right)^2-2\cdot2\cdot\sqrt{2}+2^2}\)

\(=\sqrt{\left(\sqrt{2}-2\right)^2}\)

\(=\left|\sqrt{2}-2\right|\)

\(=-\left(\sqrt{2}-2\right)=2-\sqrt{2}\)( vì \(\sqrt{2}< 2\))

23 tháng 7 2021

Đặt \(A=\sqrt[3]{4-2\sqrt{6}}+\sqrt[3]{4+2\sqrt{6}}\)

\(\Rightarrow A^3=4-2\sqrt{6}+4+2\sqrt{6}+3\left(\sqrt[3]{4+2\sqrt{6}}+\sqrt[3]{4-2\sqrt{6}}\right)\sqrt[3]{4+2\sqrt{6}}\sqrt[3]{4-2\sqrt{6}}=8-6A\)

\(\Rightarrow A^3+6A-8=0\).

Giải pt bậc 3 này ta được \(A\approx1,107\).

P/s: Bài này có vấn đề vì pt bậc 3 này muốn giải dc phải dùng công thức nghiệm?

18 tháng 9 2021

\(=\sqrt{\left(2+\sqrt{2}\right)^2}-\sqrt{\left(2-\sqrt{2}\right)^2}\)

\(=\left|2+\sqrt{2}\right|-\left|2-\sqrt{2}\right|\)

\(=2+\sqrt{2}-2+\sqrt{2}=2\sqrt{2}\)

AH
Akai Haruma
Giáo viên
15 tháng 5 2021

Lời giải:

\(\sqrt{6+2\sqrt{2}.\sqrt{3-\sqrt{4+2\sqrt{3}}}}=\sqrt{6+2\sqrt{2}.\sqrt{3-\sqrt{(\sqrt{3}+1)^2}}}\)

\(=\sqrt{6+2\sqrt{2}.\sqrt{3-(\sqrt{3}+1)}}\)

\(=\sqrt{6+2\sqrt{2}.\sqrt{2-\sqrt{3}}}=\sqrt{6+2\sqrt{4-2\sqrt{3}}}\)

\(=\sqrt{6+2\sqrt{(\sqrt{3}-1)^2}}=\sqrt{6+2(\sqrt{3}-1)}=\sqrt{4+2\sqrt{3}}\)

\(=\sqrt{(\sqrt{3}+1)^2}=\sqrt{3}+1\)

17 tháng 10 2021

undefined

1: =3+căn 2-3+căn 2

=2căn 2

2: =(căn 3-2)(căn 3+2)

=3-4=-1

17 tháng 7 2023

1) \(\sqrt{9+4\sqrt{5}}-\sqrt{9-4\sqrt{5}}\)

\(=\sqrt{2^2+2\cdot2\cdot\sqrt{5}+\left(\sqrt{5}\right)^2}-\sqrt{2^2-2\cdot2\cdot\sqrt{5}+\left(\sqrt{5}\right)^2}\)

\(=\sqrt{\left(2+\sqrt{5}\right)^2}-\sqrt{\left(2-\sqrt{5}\right)^2}\)

\(=\left|2+\sqrt{5}\right|-\left|2-\sqrt{5}\right|\)

\(=2+\sqrt{5}+2-\sqrt{5}\)

\(=4\)

2) \(\sqrt{12-6\sqrt{3}}+\sqrt{12+6\sqrt{3}}\)

\(=\sqrt{3^2-2\cdot3\cdot\sqrt{3}+\left(\sqrt{3}\right)^2}+\sqrt{3^2+2\cdot3\cdot\sqrt{3}+\left(\sqrt{3}\right)^2}\)

\(=\sqrt{\left(3-\sqrt{3}\right)^2}+\sqrt{\left(3+\sqrt{3}\right)^2}\)

\(=\left|3-\sqrt{3}\right|+\left|3+\sqrt{3}\right|\)

\(=3-\sqrt{3}+3+\sqrt{3}\)

\(=6\)

29 tháng 7 2023

Biểu thức có thể được rút gọn như sau:

√11 + 4√6 − √5 − 2√6
= √11 + (4 - 2)√6 − √5
= √11 + 2√6 − √5

a: \(=\dfrac{6+4\sqrt{2}}{\sqrt{2}+2+\sqrt{2}}+\dfrac{6-4\sqrt{2}}{\sqrt{2}-2+\sqrt{2}}\)

\(=\dfrac{6+4\sqrt{2}}{2+2\sqrt{2}}+\dfrac{6-4\sqrt{2}}{2\sqrt{2}-2}\)

\(=\dfrac{3+2\sqrt{2}}{\sqrt{2}+1}+\dfrac{3-2\sqrt{2}}{\sqrt{2}-1}\)

=căn 2+1+căn 2-1=2căn 2

b: \(=\dfrac{\sqrt{3}+\sqrt{3+\sqrt{3}}+\sqrt{3}-\sqrt{3+\sqrt{3}}}{1-\sqrt{3}-1}=\dfrac{-2\sqrt{3}}{\sqrt{3}}=-2\)

28 tháng 6 2023

bạn ơi cho mình hỏi câu b chi tiết hơn đước ko ạ

mình chưa hiểu lắm