\(\sqrt{0,169}\)+\(\sqrt{0,25}\)<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
24 tháng 6 2021

Lời giải:

$\sqrt{0,169}+\sqrt{0,25}-\sqrt{(-11)^2}$

$=\sqrt{0,13^2.10}+\sqrt{0,5^2}-\sqrt{(-11)^2}$

$=|0,13|\sqrt{10}+|0,5|-|-11|$

$=0,13\sqrt{10}+0,5-11=0,13\sqrt{10}-10,5$

12 tháng 8 2020

1)  Cách 1 :

\(M=\sqrt{11-6\sqrt{2}}+\sqrt{11+6\sqrt{2}}\)

\(M=\sqrt{9-6\sqrt{2}+2}+\sqrt{9+6\sqrt{2}+2}\)

\(M=\sqrt{\left(3-\sqrt{2}\right)^2}+\sqrt{\left(3+\sqrt{2}\right)^2}\)

\(M=\left|3-\sqrt{2}\right|+\left|3+\sqrt{2}\right|\)

\(M=3-\sqrt{2}+3+\sqrt{2}=6\)

Cách 2 :

\(M=\sqrt{11-6\sqrt{2}}+\sqrt{11+6\sqrt{2}}\)

\(\Rightarrow M^2=11-6\sqrt{2}+2\sqrt{11-6\sqrt{2}}.\sqrt{11+6\sqrt{2}}+11+6\sqrt{2}\)

\(\Leftrightarrow M^2=22+2.7=36\)

\(\Leftrightarrow M=6\left(\sqrt{11-6\sqrt{2}}+\sqrt{11+6\sqrt{2}}>0\right)\)

2) 

\(A=53-20\sqrt{4+\sqrt{9-4\sqrt{2}}}\)

\(\Leftrightarrow A=53-20\sqrt{4+\sqrt{8-4\sqrt{2}+1}}\)

\(\Leftrightarrow A=53-20\sqrt{4+\sqrt{\left(2\sqrt{2}-1\right)^2}}\)

\(\Leftrightarrow A=53-20\sqrt{4+\left|2\sqrt{2}-1\right|}\)

\(\Leftrightarrow A=53-20\sqrt{4+2\sqrt{2}-1}\)

\(\Leftrightarrow A=53-20\sqrt{3+2\sqrt{2}}\)

\(\Leftrightarrow A=53-20\sqrt{2+2\sqrt{2}+1}\)

\(\Leftrightarrow A=53-20\left(\sqrt{2}+1\right)\)

\(\Leftrightarrow A=53-20\sqrt{2}-20=33-20\sqrt{2}\)

12 tháng 8 2020

3) 

\(M=\sqrt{3-\sqrt{5}}.\left(3+\sqrt{5}\right)\left(\sqrt{10}-\sqrt{2}\right)\)

\(M=\sqrt{3-\sqrt{5}}.\left(3\sqrt{10}-3\sqrt{2}+5\sqrt{2}-\sqrt{10}\right)\)

\(M=\sqrt{3-\sqrt{5}}\left(2\sqrt{10}+2\sqrt{2}\right)\)

\(M=2\sqrt{2}.\sqrt{3-\sqrt{5}}\left(\sqrt{5}+1\right)\)

\(\Rightarrow M^2=8.\left(3-\sqrt{5}\right).\left(5+2\sqrt{5}+1\right)\)

\(\Leftrightarrow M^2=\left(24-8\sqrt{5}\right)\left(6+2\sqrt{5}\right)\)

\(\Leftrightarrow M^2=144+48\sqrt{5}-48\sqrt{5}-80\)

\(\Leftrightarrow M^2=64\Leftrightarrow M=8\left(\sqrt{3-\sqrt{5}}.\left(3+\sqrt{5}\right).\left(\sqrt{10}-\sqrt{2}\right)>0\right)\)

13 tháng 8 2017

=\(\sqrt{3}-1+2-\) \(\sqrt{3}=1\)

b.=\(\frac{2+\sqrt{3}-2+\sqrt{3}}{2^2-3}=2\sqrt{3}\)

16 tháng 6 2017

a) \(\left(2\sqrt{3}+\sqrt{5}\right)\sqrt{3}-\sqrt{60}\) = \(6+\sqrt{15}-2\sqrt{15}\)

= \(6-\sqrt{15}\)

b) \(\left(5\sqrt{2}+2\sqrt{5}\right)\sqrt{5}-\sqrt{250}\) = \(5\sqrt{10}+10-5\sqrt{10}\) = \(10\)

c) \(\left(\sqrt{28}-\sqrt{12}-\sqrt{7}\right)\sqrt{7}+2\sqrt{21}\) = \(14-2\sqrt{21}-7+2\sqrt{21}\)

= \(7\)

d) \(\left(\sqrt{99}-\sqrt{18}-\sqrt{11}\right)\sqrt{11}+3\sqrt{22}\)

= \(33-3\sqrt{22}-11+3\sqrt{22}\) = \(22\)

23 tháng 4 2017

a)(2√3+√5)√3-√60
=6+√15-2√15
=6-√15

b)(5√2+2√5)√5-√250
=5√10+10-5√10
=10

c)(√28-√12-√7)√7+2√21
=14-2√21-7+2√21
=7

d)(√99-√18-√11)√11+3√22
=33-3√22-11+3√22
=22

27 tháng 10 2019

1. Câu hỏi của Nữ hoàng sến súa là ta - Toán lớp 9 - Học toán với OnlineMath

16 tháng 8 2017

b, \(\frac{\sqrt{3}}{2+\sqrt{3}}-\frac{\sqrt{3}}{2-\sqrt{3}}\) = \(\frac{\sqrt{3}\left(2-\sqrt{3}\right)-\sqrt{3}\left(2+\sqrt{3}\right)}{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}\)=\(\frac{2\sqrt{3}-3-2\sqrt{3}-3}{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}\)=\(\frac{-6}{4-3}\)=-6

16 tháng 8 2017

c,\(\frac{2}{\sqrt{5}-2}-\frac{2}{\sqrt{5}+2}\)=\(\frac{2\left(\sqrt{5}+2\right)-2\left(\sqrt{5}-2\right)}{\left(\sqrt{5}+2\right)\left(\sqrt{5}-2\right)}\)=\(\frac{2\sqrt{5}+4-2\sqrt{5}+4}{\sqrt{5}^2-2^2}\)=\(\frac{8}{1}\)=8

1 tháng 4 2017

Để học tốt Toán 9 | Giải bài tập Toán 9

13 tháng 8 2017

\(=\sqrt{\left(\sqrt{3}+2\right)^2}-\sqrt{\left(2\sqrt{3}-1\right)^2}\)

\(=\sqrt{3}+2-2\sqrt{3}+1\)

\(=3-\sqrt{3}\)