Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) A \(=\)\(\frac{\left(2x^2+2x\right)\left(x-2\right)^2}{\left(x^3-4x\right)\left(x+1\right)}\)\(=\)\(\frac{2x\left(x+1\right)\left(x-2\right)^2}{x\left(x-2\right)\left(x+2\right)\left(x+1\right)}\)
\(=\)\(\frac{2\left(x-2\right)}{x+2}\)\(=\)\(\frac{2x-4}{x+2}\)
Tại x = \(\frac{1}{2}\)thì:
A = \(\frac{2.\frac{1}{2}-4}{\frac{1}{2}+2}\)\(=\)\(\frac{-3}{\frac{5}{2}}\)\(=\)\(\frac{-6}{5}\)
Câu 1 ;
a) \(x^2-2x-15\)
= \(x^2-5x+3x-15\)
= \(x(x-5)+3(x-5)\)
= \((x+3).(x-5)\)
b) \(xy+\frac{1}{3}y-\frac{1}{4}x-\frac{1}{12}\)
= \((x+\frac{1}{3})y-\frac{1}{4}(x+\frac{1}{3})\)
= \((x-\frac{1}{4}).(x+\frac{1}{3})\)
Câu 2 :
\(A=\left(x+1\right)\left(x^2-x+1\right)+x-\left(x-1\right)\left(x^2+x+1\right)+1994\)
=> \(A=x^3+1+x-x^3+1+1994\)
=> \(A=1+x+1+1994\)
=> \(A=x+1996=-1995+1996=1\)
\(a,\frac{\left(2x^2+2x\right)\left(x-2\right)^2}{\left(x^3-4x\right)\left(x+1\right)}\)
\(=\frac{2x\left(x+1\right)\left(x-2\right)^2}{x\left(x-2\right)\left(x+2\right)\left(x+1\right)}\)
\(=\frac{2\left(x-2\right)}{x+2}\)
Với \(x=\frac{1}{2}\)
\(\Rightarrow\frac{2\left(x-2\right)}{x+2}=\frac{2\left(\frac{1}{2}-2\right)}{\frac{1}{2}+2}=\frac{2.-\frac{3}{2}}{\frac{5}{2}}=-3.\frac{2}{5}=\frac{-6}{5}\)
b,Do x = -5; y = 10=> y = -2x
Thay y = -2x vào biểu thức ta được
\(\frac{x^3-x^2\left(-2x\right)+x\left(-2x\right)^2}{x^3+\left(-2x\right)^3}\)
\(=\frac{x^3+2x^3+2x^2}{x^3-8x^3}\)
\(=\frac{3x^3+2x^2}{-7x^3}=\frac{3}{-7}+\frac{2}{-7x}\)
Thay x = -5 là đc
\(A=\left(\frac{4}{x-y}-\frac{x-y}{y^2}\right).\frac{y^2-xy}{x-3y}+\left(\frac{x}{2}-\frac{x^2-xy}{x-2y}\right):\frac{xy+y^2}{2x-4y}\)
\(=\frac{4y^2-\left(x-y\right)^2}{y^2\left(x-y\right)}.\frac{y^2-xy}{x-3y}+\frac{x\left(x-2y\right)-2\left(x^2-xy\right)}{2\left(x-2y\right)}.\frac{2x-4y}{xy+y^2}\)
\(=\frac{3y^2+2xy-x^2}{y^2\left(x-y\right)}.\frac{y^2-xy}{x-3y}+\frac{-x^2}{2\left(x-2y\right)}.\frac{2x-4y}{xy+y^2}\)
\(=\frac{\left(x+y\right)\left(3y-x\right)}{y^2\left(x-y\right)}.\frac{y\left(y-x\right)}{x-3y}-\frac{x^2}{2\left(x-2y\right)}.\frac{2\left(x-2y\right)}{y\left(x+y\right)}\)
\(=\frac{\left(x+y\right)}{y}-\frac{x^2}{y\left(x+y\right)}\)
\(=\frac{\left(x+y\right)^2-x^2}{y\left(x+y\right)}=\frac{2xy+y^2}{y\left(x+y\right)}=\frac{2x+y}{x+y}\)
Giờ chỉ cần thế x, y vô nữa là xong nhé.
\(A=\left(\frac{4}{x-y}-\frac{x-y}{y^2}\right).\frac{y^2-xy}{x-3y}\)\(+\left(\frac{x}{2}-\frac{x^2-xy}{x-2y}\right):\frac{xy+y^2}{2x-4y}\)
\(=\left(\frac{4}{x-y}-\frac{x-y}{y^2}\right).\frac{y\left(y-x\right)}{x-3y}\)\(+\left(\frac{x}{2}-\frac{x\left(x-y\right)}{x-2y}\right):\frac{y\left(x+y\right)}{2\left(x-2y\right)}\)
\(=\frac{4y\left(y-x\right)}{\left(x-y\right)\left(x-3y\right)}-\frac{\left(x-y\right)y\left(y-x\right)}{y^2\left(x-3y\right)}\)\(+\frac{x.2\left(x-2y\right)}{2.y\left(x+y\right)}-\frac{x\left(x-y\right).2\left(x-2y\right)}{\left(x-2y\right).y\left(x+y\right)}\)
\(=\frac{-4y}{x-3y}+\frac{\left(x-y\right)^2}{y\left(x-3y\right)}+\frac{x\left(x-2y\right)}{y\left(x+y\right)}-\frac{2x\left(x-y\right)}{y\left(x+y\right)}\)
\(=\frac{-4y^2+x^2-2xy+y^2}{y\left(x-3y\right)}+\frac{x^2-2xy-2x^2+2xy}{y\left(x+y\right)}\)
\(=\frac{x^2-2xy-3y^2}{y\left(x-3y\right)}+\frac{-x^2}{y\left(x+y\right)}\)
\(=\frac{x^2+xy-3xy-3y^2}{y\left(x-3y\right)}-\frac{x^2}{y\left(x+y\right)}\)
\(=\frac{x\left(x+y\right)-3y\left(x+y\right)}{y\left(x-3y\right)}-\frac{x^2}{y\left(x+y\right)}\)
\(\frac{\left(x+y\right)\left(x-3y\right)}{y\left(x-3y\right)}-\frac{x^2}{y\left(x+y\right)}\)
\(=\frac{x+y}{y}-\frac{x^2}{y\left(x+y\right)}=\frac{\left(x+y\right)^2-x^2}{y\left(x+y\right)}\)
\(=\frac{x^2-2xy+y^2-x^2}{y\left(x+y\right)}=\frac{-2xy+y^2}{y\left(x+y\right)}\)
\(=\frac{y\left(y-2x\right)}{y\left(x+y\right)}=\frac{y-2x}{x+y}\)
Thay \(x=\frac{1}{2};y=\frac{1}{3}\)vào A ta có :
\(A=\frac{\frac{1}{3}-2.\frac{1}{2}}{\frac{1}{2}+\frac{1}{3}}=\frac{\frac{1}{3}-1}{\frac{3}{6}+\frac{2}{6}}=\frac{2}{3}:\frac{5}{6}=\frac{2.6}{3.5}=\frac{4}{5}\)
Vậy \(A=\frac{4}{5}\)tại \(x=\frac{1}{2};y=\frac{1}{3}\)
a. \(=4x^2-4xy+y^2+4x^2-4xy+y^2=8x^2+2y^2\)
\(=8.\left(\frac{1}{21}\right)^2+4.\left(-0.3\right)^2=\frac{4169}{11025}\)
b, \(=\left(\frac{1}{7}xy+7yz+\frac{1}{7}xy-7yz\right)\left(\frac{1}{7}xy+7yz-\frac{1}{7}xy+7yz\right)\)
\(=\frac{2}{7}xy.14yz=4xy^2z=4.2.\left(0,25\right)^2.\left(-4\right)=-2\)
\(\frac{x\left(x+5\right)+y\left(y+5\right)+2\left(xy-3\right)}{x\left(x+6\right)+y\left(y+6\right)2xy}\)
=\(\frac{x^2+5x+y^2+5y+2xy-3}{x^2+6x+y^2+6y+2xy}\)
triệt tiêu x2;y2;2xy ta được:
\(\frac{5x+5y-3}{6x+6y}=\frac{5\left(x+y\right)-3}{6\left(x+y\right)}\)
=\(\frac{5.2010-3}{6.2010}=\frac{3349}{4020}\)
a, \(A=\left(3x-2\right)^2+\left(3x+2\right)^2+2\left(9x^2-4\right)\)
\(=\left(3x-2\right)^2+\left(3x+2\right)^2+2\left(3x-2\right)\left(3x+2\right)\)
\(=\left(3x-2+3x+2\right)^2\)
\(=36x^2=36.\left(-\frac{1}{3}\right)^2=4\)
b, \(B=\left(x+y-7\right)^2-2\left(x+y-7\right)\left(y-6\right)+\left(y-6\right)^2\)
\(=\left[\left(x+y-7\right)-\left(y-6\right)\right]^2\)
\(=\left(x-1\right)^2\)
\(=\left(101-1\right)^2=10000\)
c, \(C=4x^2-20x+27\)
\(=\left(2x\right)^2-2.2x.5+5^2+2\)
\(=\left(2x-5\right)^2+2\)
\(=\left(52,5.2-5\right)^2+2\)
\(=100^2+2=10002\)
Bài này dễ mà chỉ dùng hằng đẳng thức thôi. Chúc bạn học tốt.
với x=-12 và y=99
\(C=\frac{x^3-x}{\left(1+xy\right)^2-\left(x+y\right)^2}\)
ĐKXĐ tự tìm
\(=\frac{x\left(x^2-1\right)}{\left(1+xy-x-y\right)\left(1+xy+x+y\right)}\)
\(=\frac{x\left(x-1\right)\left(x+1\right)}{\left[x\left(y-1\right)-\left(y-1\right)\right]\left[x\left(y+1\right)+\left(y+1\right)\right]}\)
\(=\frac{x\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(y-1\right)\left(x+1\right)\left(y+1\right)}\)
\(=\frac{x}{\left(y-1\right)\left(y+1\right)}\)
Với x = -12 ; y = 99 => \(C=\frac{-12}{\left(99-1\right)\left(99+1\right)}=\frac{-12}{9800}=\frac{-3}{2450}\)