Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\frac{5\cdot6+5\cdot7}{5\cdot8+20}=\frac{\left(5\cdot6+5\cdot7\right)\div2}{\left(5.8+20\right)\div2}=\frac{13}{12}\)
\(\frac{8.9-4.15}{12.7-180}=\frac{12.6-12.5}{12.7-12.15}=\frac{1}{-8}=\frac{-1}{8}\)
\(Ta\)\(co\)\(\frac{13}{12}=\frac{13.2}{12.2}=\frac{26}{24}\)
\(\frac{-1}{8}=\frac{3\left(-1\right)}{3.8}=\frac{-3}{24}\)
Phần b bạn tính ra rồi làm tương tự phần a nha chúc bạn học giỏi!!!
a , 5.6 + 5.7 / 5.8 + 20 = 5.6 + 5.7 / 5.8 + 5 . 4 = 5 . ( 6+7 ) / 5 . ( 8 + 4 ) = 6 + 7 / 8 + 4 = 13 / 12 8 . 9 + 4 .15 / 12 . 7 - 180 = 4 . 2 . 3 . 3 + 2 . 2 . 3 . / 4 . 3 . 7 - 180 = 4 . 2 . 3 . 3 + 2.2.3.5 / 3 . 4 . 7 - 3 . 2 . 2 . 3. 5 = 1 . 2 . 1 . 1 + 1 . 1 . 1. 1 / 1 . 1 . 7 - 1 . 1 . 1 . 1 .1 = 3 / 6 = 1/2 b , 2^5 . 7 +2^5 / 2^5 . 5^2 - 2^5 .3 = 2^5 . ( 7 + 1) / 2^5 ( 5^2 - 3 ) = 7+1 / 5^2 - 3 = 8 / 22 = 4 / 11 3^4 . 5 - 3^6 / 3^4 . 13 + 3^4 = 3^4 . 5 - 3^4 . 3^2 / 3^4 . 13 + 3^4 = 3^4 . ( 5 - 3^2 ) / 3^4 . ( 13 + 1 ) = 5 - 3^2 / 13 + 1 = -4 / 14 = -2 / 12
Chứng Minh:C=\(3^0+3^2+3^4+...+3^{2002}⋮7\)
Nhân C với \(3^2\)ta có:
\(9S=3^2+3^4+3^6+...+3^{2004}\)
\(\Rightarrow9S-S=\left(3^2+3^4+...+3^{2004}\right)-\left(3^0+3^2+3^4+...+3^{2002}\right)\)
\(\Rightarrow8S=3^{2004}-1\)
\(\Rightarrow S=\dfrac{3^{2004}-1}{8}\)
Chứng minh:
Ta có:\(3^{2004}-1=\left(3^6\right)^{334-1}=\left(3^6-1\right).a=7.104.a\)
\(\)UCLN(7;8)=1
\(\Rightarrow S⋮7\)
Sửa lại 1 chút!
Chứng minh: C= \(3^0+3^2+3^4+3^6+...+3^{2002}\) chia hết cho 7
+) \(\frac{3.4+3.7}{6.5+9}\)=\(\frac{3.4+3.7}{2.3.5+3.3}\)=\(\frac{3.\left(4+7\right)}{3.\left(2.5+3\right)}\)=\(\frac{3.11}{3.13}\)=\(\frac{11}{13}\)
+) \(\frac{6.9-2.17}{63.3-119}\)=\(\frac{2.3.3.3-2.17}{3.3.7-7.17}\)=\(\frac{2.\left(27-17\right)}{7.\left(9-17\right)}\)=\(\frac{2.10}{7.\left(-8\right)}\)=\(\frac{20}{-56}\)=\(\frac{5}{-14}\)=\(\frac{-5}{14}\)
Ta có 13=13; 14= 2.7
MC= BCNN (13;14) =2.7.13=182
\(\frac{11}{13}\)=\(\frac{11.14}{13.14}\)=\(\frac{154}{182}\)
\(\frac{-5}{14}=\frac{-5.13}{14.13}=\frac{-65}{182}\)
Mình làm gọn nhé ,mình không có thời gian nhiều
\(\frac{\left(-2\right)^3.3^3.5^3.7.8}{3.2^4.5^3.14}=\frac{-1.3^2.7.4}{7.2}=-18\)
câu kia đề bị sai rồi ,tính không ra
k câu đó mk ghi k sai đâu
hôm nay thầy giải cho mk oy
nhưng mà dù gì thì cx cảm ơn bn nhé!
A =\(\dfrac{4}{2.5}+\dfrac{4}{5.8}+\dfrac{4}{8.11}+...+\dfrac{4}{65.68}\)
A = \(\dfrac{4}{3}.\left(\dfrac{3}{2.5}+\dfrac{3}{5.8}+\dfrac{3}{8.11}+...+\dfrac{3}{65.68}\right)\)
A = \(\dfrac{4}{3}.\left(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+...+\dfrac{1}{65}-\dfrac{1}{68}\right)\)
A = \(\dfrac{4}{3}.\left[\dfrac{1}{2}-\left(\dfrac{1}{5}-\dfrac{1}{5}\right)-\left(\dfrac{1}{8}-\dfrac{1}{8}\right)-\left(\dfrac{1}{11}-\dfrac{1}{11}\right)-...-\left(\dfrac{1}{65}-\dfrac{1}{65}\right)-\dfrac{1}{68}\right]\)
A = \(\dfrac{4}{3}.\left[\dfrac{1}{2}-0-0-0-...-0-\dfrac{1}{68}\right]\)
A = \(\dfrac{4}{3}.\left[\dfrac{1}{2}-\dfrac{1}{68}\right]\)
A = \(\dfrac{4}{3}.\dfrac{33}{68}\)
A = \(\dfrac{11}{17}\)
Bài 1:
\(A=\dfrac{1}{5}+\dfrac{1}{5^2}+\dfrac{1}{5^3}+...+\dfrac{1}{5^{99}}\)
\(\Leftrightarrow\dfrac{1}{5}A=\dfrac{1}{5^2}+\dfrac{1}{5^3}+\dfrac{1}{5^4}+...+\dfrac{1}{5^{100}}\)
Lây vế trừ vế, ta được:
\(A-\dfrac{1}{5}A=\dfrac{4}{5}A\)
\(\dfrac{4}{5}A=\dfrac{1}{5}-\dfrac{1}{5^{100}}\)
\(\Leftrightarrow A=\dfrac{\dfrac{1}{5}-\dfrac{1}{5^{100}}}{\dfrac{4}{5}}=\dfrac{\dfrac{1}{5}.\left(1-\dfrac{1}{5^{99}}\right)}{\dfrac{1}{5}.4}=\dfrac{1-\dfrac{1}{5^{99}}}{4}\)
Vậy \(A=\dfrac{1-\dfrac{1}{5^{99}}}{4}\).
Chúc bạn học tốt!
Bài 2:
Có:
\(B=3+3^3+3^5+...+3^{1991}\)
\(\Leftrightarrow B=\left(3+3^3+3^5\right)+...+\left(3^{1987}+3^{1989}+3^{1991}\right)\)
\(\Leftrightarrow B=\left(3+3^3+3^5\right)+...+3^{1986}\left(3+3^3+3^5\right)\)
\(\Leftrightarrow B=273+...+3^{1986}.273\)
\(\Leftrightarrow B=273\left(1+...+1986\right)\)
Vì \(273⋮13\)
Nên \(B=273\left(1+...+1986\right)⋮13\)
Vậy \(B⋮13\)
Lại có:
\(B=3+3^3+3^5+...+3^{1991}\)
\(\Leftrightarrow B=\left(3+3^3+3^5+3^7\right)+...+\left(3^{1985}+3^{1987}+3^{1989}+3^{1991}\right)\)
\(\Leftrightarrow B=\left(3+3^3+3^5+3^7\right)+...+3^{1984}\left(3+3^3+3^5+3^7\right)\)
\(\Leftrightarrow B=2460+...+3^{1984}.2460\)
\(\Leftrightarrow B=2460\left(1+...+3^{1984}\right)\)
Vì \(2460⋮41\)
Nên \(B=2460\left(1+...+3^{1984}\right)⋮41\)
Vậy \(B⋮41\).
Chúc bạn học tốt!
Den lop tui giai cho
giải ra thành lời cho tui đi mà !!!!