\(\sqrt{2}\left(\sqrt{8}-2\sqrt{8}\right)+2\sqrt{6}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 7 2021

\(P=\sqrt{2}\left(\sqrt{8}-2\sqrt{8}\right)+2\sqrt{6}\)

\(=\sqrt{2}\left(2\sqrt{2}-4\sqrt{2}\right)+2\sqrt{6}\)

\(=4-8+2\sqrt{6}=-4+2\sqrt{6}\)

11 tháng 6 2017

a, \(5\sqrt{\left(-2\right)^4}=5\sqrt{2^4}=5.2^2=5.4=20\)

b, \(-4\sqrt{\left(-3\right)^6}=-4\sqrt{3^6}=-4.3^3=-4.27=-108\)

c,\(\sqrt{\sqrt{\left(-5\right)^8}}=\sqrt{\sqrt{5^8}}=\sqrt{5^4}=5^2=25\)

d ,\(2\sqrt{\left(-5\right)^6}+3\sqrt{\left(-2\right)^8}\)

\(=2\sqrt{5^6}+3\sqrt{2^8}\)

=\(2.5^3+3.2^4=2.125+3.16=298\)

23 tháng 6 2018

a) \(5\sqrt{\left(-2\right)^4}\) \(=5\left|\left(-2\right)^2\right|=5.4=20\)

b) \(-4\sqrt{\left(-3\right)^6}=-4\left|\left(-3\right)^3\right|=-4.27=-108\)

c) \(\sqrt{\sqrt{\left(-5\right)^8}}=\left|\left(-5\right)^4\right|=5^4=625\)

d) \(2\sqrt{\left(-5\right)^6}+3\sqrt{\left(-2\right)^8}\) \(=2\left|\left(-5\right)^3\right|+3\left|\left(-2\right)^4\right|\)

\(=-2.\left(-125\right)+3.16\)

\(= 250 + 48 = 298\)

27 tháng 8 2020

1)  \(A^2=2+2.\frac{\sqrt{\left(8+\sqrt{15}\right)\left(8-\sqrt{15}\right)}}{2}\)

              \(2+\sqrt{64-15}=2+\sqrt{49}=2+7=9\) mà A>0

=> A=3

28 tháng 8 2020

2) \(A=\sqrt{4-\sqrt{15}}\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right).\)

 \(A=\sqrt{\left(4-\sqrt{15}\right)\left(4+\sqrt{15}\right)}\sqrt{4+\sqrt{15}}\left(\sqrt{10}-\sqrt{6}\right).\)

​​\(A=\sqrt{4+\sqrt{15}}\left(\sqrt{10}-\sqrt{6}\right).\)

\(A^2=\left(4+\sqrt{15}\right)\left(16-4\sqrt{15}\right)\)

       \(=4\left(4+\sqrt{15}\right)\left(4-\sqrt{15}\right)=4\)

Mà A >0 

=> A=2

Mà 4>3

=> \(\sqrt{4}=2>\sqrt{3}\)

=> \(A>\sqrt{3}\)

26 tháng 10 2020

a) \(\sqrt{\left(\sqrt{3}-2\right)^2}+\sqrt{12}-\sqrt{\left(-3\right)^2}\)

\(=\left|\sqrt{3}-2\right|+\sqrt{2^2\cdot3}-\sqrt{3^2}\)

\(=2-\sqrt{3}+2\sqrt{3}-3\)

\(=\sqrt{3}-1\)

b) \(\left(\sqrt{8}-3\sqrt{6}+\sqrt{2}\right)\cdot\sqrt{2}+\sqrt{108}\)

\(=\sqrt{16}-3\sqrt{12}+\sqrt{4}+\sqrt{6^2\cdot3}\)

\(=4-3\sqrt{2^2\cdot3}+2+6\sqrt{3}\)

\(=6-3\cdot2\sqrt{3}+6\sqrt{3}\)

\(=6-6\sqrt{3}+6\sqrt{3}=6\)

26 tháng 10 2020

a) \(\sqrt{\left(\sqrt{3}-2\right)^2}+\sqrt{12}-\sqrt{\left(-3\right)^2}\)

\(=\left|\sqrt{3}-2\right|+\sqrt{3.4}-\sqrt{3^2}=2-\sqrt{3}+\sqrt{4}.\sqrt{3}-3\)

\(=2-\sqrt{3}+2\sqrt{3}-3=\sqrt{3}-1\)

b) \(\left(\sqrt{8}-3\sqrt{6}+\sqrt{2}\right).\sqrt{2}+\sqrt{108}\)

\(=\sqrt{8}.\sqrt{2}-3\sqrt{6}.\sqrt{2}+\sqrt{2}.\sqrt{2}+\sqrt{108}\)

\(=\sqrt{8.2}-3\sqrt{6.2}+2+\sqrt{36.3}\)

\(=\sqrt{16}-3\sqrt{12}+2+\sqrt{36}.\sqrt{3}\)

\(=\sqrt{4^2}-3\sqrt{4.3}+2+6\sqrt{3}\)

\(=4-3\sqrt{4}.\sqrt{3}+2+6\sqrt{3}\)

\(=4-6\sqrt{3}+2+6\sqrt{3}=6\)

24 tháng 11 2019

\(a,A=\sqrt{8+\sqrt{8}+\sqrt{20}+\sqrt{40}}\)

\(=\sqrt{\left(\sqrt{5}^2+2\sqrt{5}+2\sqrt{2}\cdot\sqrt{5}\right)+\sqrt{2}^2+2\sqrt{2}\cdot1+1^2}\)

\(=\sqrt{\sqrt{5}^2+2\cdot\sqrt{5}\left(\sqrt{2}+1\right)+\left(\sqrt{2}+1\right)^2}\)

\(=\sqrt{\left(\sqrt{5}+\sqrt{2}+1\right)^2}\)

\(=\sqrt{5}+\sqrt{2}+1\)

\(b,B=\left(\frac{15}{\sqrt{6}+1}+\frac{4}{\sqrt{6}-2}-\frac{12}{3-\sqrt{6}}\right)\left(\sqrt{6}+11\right)\)

\(=\left(\frac{3\cdot\left(\sqrt{6}+1\right)\left(\sqrt{6}-1\right)}{\sqrt{6}+1}+\frac{2\left(\sqrt{6}-2\right)\left(\sqrt{6}+2\right)}{\sqrt{6}-2}-\frac{4\left(3-\sqrt{6}\right)\left(3+\sqrt{6}\right)}{3-\sqrt{6}}\right)\left(\sqrt{6}+11\right)\)

\(=\left[3\cdot\left(\sqrt{6}-1\right)+2\left(\sqrt{6}+2\right)-4\left(3+\sqrt{6}\right)\right]\left(\sqrt{6}+11\right)\)

\(=\left(\sqrt{6}+11\right)\left(\sqrt{6}-11\right)=-115\)

27 tháng 6 2017

1. \(=\sqrt{\left(\sqrt{\frac{7}{2}}+\sqrt{\frac{3}{2}}\right)^2}+\sqrt{\left(\sqrt{\frac{7}{2}}-\sqrt{\frac{3}{2}}\right)^2}-2\sqrt{4\sqrt{7}}=\frac{7}{2}+\frac{3}{2}+\frac{7}{2}-\frac{3}{2}-2\sqrt{4\sqrt{7}}\)

\(=7-2\sqrt{4\sqrt{7}}\)

29 tháng 5 2018

cho hỏi tại sao có số \(\frac{7}{2};\frac{3}{2}\)zậy chỉ với

21 tháng 9 2017

\(\left(\sqrt{12}+2\sqrt{27}-\sqrt{3}\right):\sqrt{3}\)

\(=\sqrt{12}:\sqrt{3}+2\sqrt{27}:\sqrt{3}-\sqrt{3}:\sqrt{3}\)

\(=\sqrt{4}+2\sqrt{9}-1\)

\(=2+6-1\)

\(=7\)

21 tháng 9 2017

2) \(\left(4\sqrt{2}-\sqrt{8}+2\right).\sqrt{2-\sqrt{8}}\)

\(=\left(4\sqrt{2}-2\sqrt{2}+2\right).\sqrt{2-2\sqrt{2}}\)

\(=\left(2\sqrt{2}+2\right)^2.\left(\sqrt{2-2\sqrt{2}}\right)^2\)

\(=\left(8+4\right)\left(2-2\sqrt{2}\right)\)

\(=12.\left(2-2\sqrt{2}\right)\)

\(=24-24\sqrt{2}\)

\(=24\left(1-\sqrt{2}\right)\)

3) \(\sqrt{3}\left(2\sqrt{27}-\sqrt{75}+\frac{3}{2}\sqrt{12}\right)\)

\(=\sqrt{3}\left(2\sqrt{3^2.3}-\sqrt{5^2.3}+\frac{3}{2}\sqrt{2^2.3}\right)\)

\(=\sqrt{3}\left(6\sqrt{3}-5\sqrt{3}+3\sqrt{3}\right)\)

\(=\sqrt{3}.4\sqrt{3}\)

\(=12\)