Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=\frac{a^{30}+a^{20}+a^{10}+1}{a^{2012}\left(a^{30}+a^{20}+a^{10}+1\right)+\left(a^{30}+a^{20}+a^{10}+1\right)}\)
\(M=\frac{1}{a^{2012}+1}\)
\(\frac{a^{30}+a^{20}+a^{10}+1}{a^{2042}+a^{2032}+a^{2022}+a^{2012}+a^{30}+a^{20}+a^{10}+1}=\frac{a^{30}+a^{20}+a^{10}+1}{a^{2042}+a^{2032}+a^{2022}+a^{2012}}+1=\frac{1}{a^{2012}}+1\)
=\(\frac{a^{2012}+1}{a^{2012}}\)
9) bài này nhiều cách thay lắm. chả biết cách nào nhanh hơn.
ĐK : ...
\(N=\frac{a+x+1}{a+x}:\frac{a^2+ax-a}{a+x}.\left[\frac{2ax-1+\left(a^2+x^2\right)}{2ax}\right]\)
\(N=\frac{a+x+1}{a+x}.\frac{a+x}{a\left(a+x-1\right)}.\frac{\left(a+x\right)^2-1}{2ax}\)
\(N=\frac{a+x+1}{a\left(a+x-1\right)}.\frac{\left(a+x-1\right)\left(a+x+1\right)}{2ax}\)
\(N=\frac{\left(a+x+1\right)^2}{2a^2x}=\frac{\left(a+1+\frac{1}{a-1}\right)^2}{\frac{2a^2}{a-1}}\)
\(N=\frac{\left(\frac{\left(a+1\right)\left(a-1\right)+1}{a-1}\right)^2}{\frac{2a^2}{a-1}}=\frac{\left(\frac{a^2}{a-1}\right)^2}{\frac{2a^2}{a-1}}=\frac{\frac{a^4}{\left(a-1\right)^2}}{\frac{2a^2}{a-1}}=\frac{a^2}{2\left(a-1\right)}\)
10) \(3a^2+3b^2=10ab\Leftrightarrow3a^2-10ab+3b^2=0\)
\(\Leftrightarrow\left(3a^2-9ab\right)-\left(ab-3b^2\right)=0\)
\(\Leftrightarrow3a\left(a-3b\right)-b\left(a-3b\right)=0\)
\(\Leftrightarrow\left(3a-b\right)\left(a-3b\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3a=b\\a=3b\left(loai-vi-b>a>0\right)\end{cases}}\)
Thay 3a = b vào biểu thức, ta có :
\(P=\frac{a-b}{a+b}=\frac{a-3a}{a+3a}=\frac{-2a}{4a}=\frac{-1}{2}\)
Đặt biểu thức là A, ta có:
\(A=\frac{x^{40}+x^{30}+x^{20}+x^{10}+1}{x^{45}+x^{40}+x^{35}+...+x^{10}+x^5+1}\)
\(\Rightarrow A.x^5=\frac{x^{45}+x^{35}+x^{25}+x^{15}+x^5}{x^{45}+x^{40}+x^{35}+...+x^{10}+x^5+1}\)
\(\Rightarrow A.x^5+A=\frac{x^{45}+x^{40}+x^{35}+x^{25}+x^{15}+x^5+x^{40}+x^{30}+x^{20}+x^{10}+1}{x^{45}+x^{40}+x^{35}+...+x^{10}+x^5+1}\)
\(\Rightarrow A.x^5+1=1\)
\(\Rightarrow A=\frac{1}{x^5+1}\)
a)\(\frac{x^3-x}{3x+3}=\frac{x.\left(x^2-1\right)}{3.\left(x+1\right)}=\frac{x.\left(x-1\right).\left(x+1\right)}{3.\left(x+1\right)}=\frac{x.\left(x+1\right)}{3}=\frac{x^2+x}{3}\)
\(=\dfrac{a^{20}\left(a^{10}+1\right)+\left(a^{10}+1\right)}{\left(a^{10}+1\right)\left(a^{2032}+a^{2012}+a^{20}+1\right)}\)
\(=\dfrac{a^{20}+1}{\left(a^{20}+1\right)\left(a^{2012}+1\right)}=\dfrac{1}{a^{2012}+1}\)