Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c: \(E=\dfrac{\left(x-5\right)^2}{x\left(x-5\right)}=\dfrac{x-5}{x}\)
ĐKXĐ: \(x\ne\pm3\)
\(P=\left[\dfrac{x\left(x+3\right)}{x^2\left(x+3\right)+9\left(x+3\right)}+\dfrac{3}{x^2+9}\right]:\left[\dfrac{1}{x-3}-\dfrac{6x}{x^2\left(x-3\right)+9\left(x-3\right)}\right]\)
\(=\left[\dfrac{x\left(x+3\right)}{\left(x+3\right)\left(x^2+9\right)}+\dfrac{3}{x^2+9}\right]:\left[\dfrac{1}{x-3}-\dfrac{6x}{\left(x-3\right)\left(x^2+9\right)}\right]\)
\(=\dfrac{x+3}{x^2+9}:\dfrac{x^2+9-6x}{\left(x-3\right)\left(x^2+9\right)}=\dfrac{x+3}{x^2+9}.\dfrac{\left(x-3\right)\left(x^2+9\right)}{\left(x-3\right)^2}=\dfrac{x+3}{x-3}\)
Ý 2 mình k hiểu ý bạn lắm
\(P=\dfrac{x+3}{x-3}=\dfrac{x-3+6}{x-3}=1+\dfrac{6}{x-3}\in Z\)
\(\Leftrightarrow\left(x-3\right)\inƯ\left(6\right)=\left\{-6;-3;-2;-1;1;2;3;6\right\}\)
Kết hợp vs ĐKXĐ \(\Rightarrow x\in\left\{0;1;2;4;5;6;9\right\}\)
Câu 4:
\(=\dfrac{a\left(a-b\right)-c\left(a-b\right)}{a\left(a+b\right)-c\left(a+b\right)}=\dfrac{a-b}{a+b}\)
ĐKXĐ: x \(\ne\)\(\pm\)3; x \(\ne\)-7
a) Ta có: P = \(\left(\frac{x^2+1}{x^2-9}-\frac{x}{x+3}+\frac{5}{3-x}\right):\left(\frac{2x+10}{x+3}-1\right)\)
P = \(\left(\frac{x^2+1}{\left(x-3\right)\left(x+3\right)}-\frac{x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}-\frac{5\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}\right):\left(\frac{2x+10-x-3}{x+3}\right)\)
P = \(\frac{x^2+1-x^2+3x-5x-15}{\left(x-3\right)\left(x+3\right)}:\frac{x+7}{x+3}\)
P = \(\frac{-2x-14}{\left(x-3\right)\left(x+3\right)}\cdot\frac{x+3}{x+7}\)
P = \(\frac{-2\left(x+7\right)}{x-3}\cdot\frac{1}{x+7}=-\frac{2}{x-3}\)
b) Với x \(\ne\)\(\pm\)3 và x \(\ne\)-7
Ta có: x - 1 = 2 <=> x = 3 (ktm)
=> ko tồn tại giá trị P khi x - 1 = 2
c) Với x \(\ne\)\(\pm\)3; và x \(\ne\)-7
Ta có: P = \(\frac{x+5}{6}\)
<=> \(-\frac{2}{x-3}=\frac{x+5}{6}\)
=> (x - 3)(x + 5) = -12
<=> x2 + 2x - 15 = -12
<=> x2 + 2x - 3 = 0
<=> x2 + 3x - x - 3 = 0
<=> (x - 1)(x + 3) = 0
<=> \(\orbr{\begin{cases}x-1=0\\x+3=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=1\left(tm\right)\\x=-3\left(ktm\right)\end{cases}}\)
Vậy ...
a) \(P=\left(\frac{x^2+1}{x^2-9}-\frac{x}{x+3}+\frac{5}{3-x}\right):\left(\frac{2x+10}{x+3}-1\right)\left(x\ne\pm3\right)\)
\(=\left(\frac{x^2+1}{\left(x-3\right)\left(x+3\right)}-\frac{x}{x+3}-\frac{5}{x-3}\right):\frac{2x+10-x-3}{x+3}\)
\(=\left(\frac{x^2+1}{\left(x-3\right)\left(x+3\right)}-\frac{x^2-3x}{\left(x-3\right)\left(x+3\right)}-\frac{5x+15}{\left(x-3\right)\left(x+3\right)}\right):\frac{x+7}{x+3}\)
\(=\frac{x^2+1-x^2+3x-5x-15}{\left(x-3\right)\left(x+3\right)}\cdot\frac{x+3}{x+7}\)
\(=\frac{\left(-2x-14\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)\left(x+7\right)}\)
\(=\frac{-2\left(x+7\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)\left(x+7\right)}=-\frac{2}{x-3}\)
vậy \(P=-\frac{2}{x-3}\left(x\ne\pm3\right)\)
b) ta có \(P=-\frac{2}{x-3}\left(x\ne\pm3\right)\)
có x-1=2
<=> x=3 (không thỏa mãn điều kiện)
vậy không có giá trị P để x-1=2
c) ta có: \(P=-\frac{2}{x-3}\left(x\ne\pm3\right)\)
P=\(\frac{x+5}{6}\)=> \(\frac{-2}{x-3}=\frac{x+5}{6}\)
\(\Leftrightarrow x^2+2x-15=-12\)
\(\Leftrightarrow x^2+2x-3=0\)
\(\Leftrightarrow\left(x+3\right)\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+3=0\\x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-3\\x=1\end{cases}}}\)
đối chiếu điều kiện ta thấy x=1 thỏa mãn điều kiện
vậy \(P=\frac{x+5}{6}\)đạt được khi x=1