Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a.
$=-2x^5+10x^4+2424x^3-x^3-3=-2x^5+10x^4+2423x^3-3$
b.
$=(x-5y)^2+2(x-5y)(x+y)+(x+y)^2$
$=[(x-5y)+(x+y)]^2=(2x-4y)^2=4x^2-16xy+16y^2$
a) Ta có: \(\left(y+3\right)\left(y^2-3y+9\right)-\left(60-y^3\right)\)
\(=y^3+27-60+y^3\)
\(=2y^3-33\)
b) Ta có: \(\left(2x+y\right)\left(4x^2-2xy+y^2\right)-\left(2x-y\right)\left(4x^2+2xy+y^2\right)\)
\(=8x^3+y^3-8x^3+y^3\)
\(=2y^3\)
\(\frac{15x\left(x+y\right)^3}{5y\left(x+y\right)^2}\)
ĐKXĐ : \(x+y\ne0\Leftrightarrow x\ne-y\)
\(=\frac{5\cdot3x\cdot\left(x+y\right)^2\left(x+y\right)}{5\cdot y\cdot\left(x+y\right)^2}\)
\(=\frac{3x\left(x+y\right)}{y}\)
a) \(-xy\cdot2x^3y^4\cdot-\dfrac{5}{4}x^2y^3\)
\(=\left(-1\cdot2\cdot-\dfrac{5}{4}\right)\cdot\left(x\cdot x^3\cdot x^2\right)\cdot\left(y\cdot y^4\cdot y^3\right)\)
\(=\dfrac{5}{2}x^6y^8\)
Bậc là: \(6+8=14\)
Hệ số: \(\dfrac{5}{2}\)
Biến: \(x^6y^8\)
b) \(5xyz\cdot4x^3y^2\cdot-2x^5y\)
\(=\left(5\cdot4\cdot-2\right)\cdot\left(x\cdot x^3\cdot x^5\right)\cdot\left(y\cdot y^2\cdot y\right)\cdot z\)
\(=-40x^9y^4z\)
Bậc là: \(9+4=13\)
Hệ số: \(-40\)
Biến: \(x^9y^4z\)
c) \(-2xy^5\cdot-x^2y^2\cdot7x^2y\)
\(=\left(-2\cdot-1\cdot7\right)\cdot\left(x\cdot x^2\cdot x^2\right)\cdot\left(y^5\cdot y^2\cdot y\right)\)
\(=14x^6y^8\)
Bậc là: \(6+8=14\)
Hệ số: \(14\)
Biến: \(x^6y^8\)
\(a,\dfrac{\left(x-1\right)^2}{x^2-1}=\dfrac{\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)}=\dfrac{x-1}{x+1}\\ b,\dfrac{x^2-16}{4x-x^2}=\dfrac{\left(x-4\right)\left(x+4\right)}{x\left(4-x\right)}=\dfrac{-\left(4-x\right)\left(x+4\right)}{x\left(4-x\right)}=\dfrac{-\left(x+4\right)}{x}\\ c,\dfrac{x^2+6x+9}{2x+6}=\dfrac{\left(x+3\right)^2}{2\left(x+3\right)}=\dfrac{x+3}{2}\)
\(d,\dfrac{x^2+x}{x^2+4x+3}=\dfrac{x\left(x+1\right)}{\left(x^2+x\right)+\left(3x+3\right)}=\dfrac{x\left(x+1\right)}{x\left(x+1\right)+3\left(x+1\right)}=\dfrac{x\left(x+1\right)}{\left(x+1\right)\left(x+3\right)}=\dfrac{x}{x+3}\)
\(e,\dfrac{x^2-x+1}{x^3+1}=\dfrac{x^2-x+1}{\left(x+1\right)\left(x^2-x+1\right)}=\dfrac{1}{x+1}\\ f,\dfrac{\left(x+y\right)^2-z^2}{x+y+z}=\dfrac{\left(x+y-z\right)\left(x+y+z\right)}{x+y+z}=x+y-z\)
\(a,\left(x+y\right)^2-\left(x-y\right)^2=\left(x+y-x+y\right)\left(x+y+x-y\right)=4xy\\ b,\left(x+y\right)^2+\left(x-y\right)^2-2\left(x+y\right)\left(x-y\right)=\left(x+y-x+y\right)^2=4y^2\\ c,\left(x^2-1\right)\left(x^2-x+1\right)\\ =\left(x-1\right)\left(x+1\right)\left(x^2-x+1\right)\\ =\left(x-1\right)\left(x^3+1\right)\\ =x^4-x^3+x-1\)
a. (x + y)2 - (x - y)2
= (x + y - x + y)(x + y + x - y)
= 2y . 2x
= 4xy
b. (x + y)2 + (x - y)2 - 2(x + y)(x - y)
= (x2 + 2xy + y2) + (x2 - 2xy + y2) - 2(x2 - y2)
= x2 + 2xy + y2 + x2 - 2xy + y2 - 2x2 + 2y2
= x2 + x2 - 2x2 + 2xy - 2xy + y2 + y2 + 2y2
= 4y2
c. (x2 - 1)(x2 - x + 1)
= x4 - x3 + x2 - x2 + x - 1
= x4 - x3 + x - 1
a: \(N=\left(2x-3y\right)\left(2x+3y\right)=\left(2x\right)^2-\left(3y\right)^2\)
\(=4x^2-9y^2\)
Thay x=1/2 và y=1/3 vào N, ta được:
\(N=4\cdot\left(\dfrac{1}{2}\right)^2-9\left(\dfrac{1}{3}\right)^2\)
\(=4\cdot\dfrac{1}{4}-9\cdot\dfrac{1}{9}\)
=1-1
=0
b: \(N=\left(2x-y\right)\left(4x^2+2xy+y^2\right)\)
\(=\left(2x-y\right)\left[\left(2x\right)^2+2x\cdot y+y^2\right]\)
\(=\left(2x\right)^3-y^3=8x^3-y^3\)
Khi x=1 và y=3 thì \(N=8\cdot1^3-3^3=8-27=-19\)
Ta có :
\(\frac{y^3-y}{5y+y}=\frac{y\left(y^2-1\right)}{6y}=\frac{y^2-1}{6}.\)
Đúng nhé!
HAND!!!!