K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 8 2019

\(a,\frac{x^2-8x+15}{x^2-6x+9}\)

\(=\frac{\left(x-4\right)^2-1}{\left(x-3\right)^2}\)

\(=\frac{\left(x-3\right)\left(x-5\right)}{\left(x-3\right)^2}\)

\(=\frac{x-5}{x-3}\)

25 tháng 8 2019

b) \(\frac{2x^2+3x-2}{x^2+x-2}\)

\(=\frac{2x^2-4x+x-2}{x^2+2x-x-2}\)

\(=\frac{2x\left(x-2\right)+\left(x-2\right)}{x\left(x+2\right)-\left(x+2\right)}\)

\(=\frac{\left(2x+2\right)\left(x-2\right)}{\left(x-1\right)\left(x+2\right)}\)

5 tháng 2 2023

\(\left(\dfrac{x-3}{x}-\dfrac{x}{x-3}+\dfrac{9}{x^2-3x}\right):\dfrac{2x-2}{x}\)

\(=\left(\dfrac{x-3}{x}-\dfrac{x}{x-3}+\dfrac{9}{x\left(x-3\right)}\right):\dfrac{2x-2}{x}\)

\(=\left(\dfrac{\left(x-3\right)^2}{x\left(x-3\right)}-\dfrac{x^2}{x\left(x-3\right)}+\dfrac{9}{x\left(x-3\right)}\right)\cdot\dfrac{x}{2\left(x-1\right)}\)

\(=\dfrac{x^2-6x+9-x^2+9}{x\left(x-3\right)}\cdot\dfrac{x}{2\left(x-1\right)}\)

\(=\dfrac{-6x+18}{x\left(x-3\right)}\cdot\dfrac{x}{2\left(x-1\right)}\\ =\dfrac{-6\left(x-3\right)}{x\left(x-3\right)}\cdot\dfrac{x}{2\left(x-1\right)}\)

\(=\dfrac{-6}{x}\cdot\dfrac{x}{2\left(x-1\right)}\)

\(=\dfrac{-3}{x-1}\)

5 tháng 2 2023

\(ĐK:x\ne0,x\ne3\)

21 tháng 7 2021

Trả lời:

a, \(A=\frac{x^2-9}{x^2-6x+9}=\frac{\left(x-3\right)\left(x+3\right)}{\left(x-3\right)^2}=\frac{x+3}{x-3}\)

b, \(B=\frac{9x^2-16}{3x^2-4x}=\frac{\left(3x-4\right)\left(3x+4\right)}{x\left(3x-4\right)}=\frac{3x+4}{x}\)

c, \(C=\frac{x^2+4x+4}{2x+4}=\frac{\left(x+2\right)^2}{2\left(x+2\right)}=\frac{x+2}{2}\)

d, \(D=\frac{2x-x^2}{x^2-4}=\frac{x\left(2-x\right)}{\left(x-2\right)\left(x+2\right)}=-\frac{x\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}=-\frac{x}{x+2}\)

e, \(E=\frac{3x^2+6x+12}{x^3-8}=\frac{3\left(x^2+2x+4\right)}{\left(x-2\right)\left(x^2+2x+4\right)}=\frac{3}{x-2}\)

a) \(\dfrac{9x^2-6x+1}{9x^2-1}\)

\(=\dfrac{\left(3x-1\right)^2}{\left(3x-1\right)\left(3x+1\right)}\)

\(=\dfrac{3x-1}{3x+1}\)

\(=\dfrac{3\cdot\left(-3\right)-1}{3\cdot\left(-3\right)+1}=\dfrac{-9-1}{-9+1}=\dfrac{-10}{-8}=\dfrac{5}{4}\)

b) Ta có: \(\dfrac{x^2-6x+9}{3x^2-9x}\)

\(=\dfrac{\left(x-3\right)^2}{3x\left(x-3\right)}\)

\(=\dfrac{x-3}{3x}\)

\(=\dfrac{-\dfrac{1}{3}-3}{3\cdot\dfrac{-1}{3}}=\dfrac{-\dfrac{10}{3}}{-1}=\dfrac{10}{3}\)

c) Ta có: \(\dfrac{x^2-4x+4}{2x^2-4x}\)

\(=\dfrac{\left(x-2\right)^2}{2x\left(x-2\right)}\)

\(=\dfrac{x-2}{2x}\)

\(=\dfrac{\dfrac{-1}{2}-2}{2\cdot\dfrac{-1}{2}}=\dfrac{-\dfrac{5}{2}}{-1}=\dfrac{5}{2}\)

22 tháng 12 2021

\(a,\dfrac{\left(x-1\right)^2}{x^2-1}=\dfrac{\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)}=\dfrac{x-1}{x+1}\\ b,\dfrac{x^2-16}{4x-x^2}=\dfrac{\left(x-4\right)\left(x+4\right)}{x\left(4-x\right)}=\dfrac{-\left(4-x\right)\left(x+4\right)}{x\left(4-x\right)}=\dfrac{-\left(x+4\right)}{x}\\ c,\dfrac{x^2+6x+9}{2x+6}=\dfrac{\left(x+3\right)^2}{2\left(x+3\right)}=\dfrac{x+3}{2}\)

\(d,\dfrac{x^2+x}{x^2+4x+3}=\dfrac{x\left(x+1\right)}{\left(x^2+x\right)+\left(3x+3\right)}=\dfrac{x\left(x+1\right)}{x\left(x+1\right)+3\left(x+1\right)}=\dfrac{x\left(x+1\right)}{\left(x+1\right)\left(x+3\right)}=\dfrac{x}{x+3}\)

\(e,\dfrac{x^2-x+1}{x^3+1}=\dfrac{x^2-x+1}{\left(x+1\right)\left(x^2-x+1\right)}=\dfrac{1}{x+1}\\ f,\dfrac{\left(x+y\right)^2-z^2}{x+y+z}=\dfrac{\left(x+y-z\right)\left(x+y+z\right)}{x+y+z}=x+y-z\)

19 tháng 8 2020

a)\(\frac{x^2+3x+2}{3x+6}=\frac{x^2+2x+x+2}{3\cdot\left(x+2\right)}=\frac{\left(x^2+2x\right)+\left(x+2\right)}{3\cdot\left(x+2\right)}=\frac{x\cdot\left(x+2\right)+\left(x+2\right)}{3\cdot\left(x+2\right)}\)

\(=\frac{\left(x+2\right)\cdot\left(x+1\right)}{3\cdot\left(x+2\right)}=\frac{x+1}{3}\)

19 tháng 8 2020

b) \(\frac{2x^2+x-1}{6x-3}=\frac{2x^2+2x-x-1}{3\cdot\left(2x-1\right)}=\frac{\left(2x^2+2x\right)-\left(x+1\right)}{3\cdot\left(2x-1\right)}\)

\(=\frac{2x\cdot\left(x+1\right)-\left(x+1\right)}{3\cdot\left(2x-1\right)}=\frac{\left(2x-1\right)\cdot\left(x+1\right)}{3\cdot\left(2x-1\right)}=\frac{x+1}{3}\)

18 tháng 12 2017

M = \(\left(\frac{x}{x-3}-\frac{x+3}{3x^2-6x-9}+\frac{1}{3x+3}\right)\)\(\frac{x^2-2x-3}{x^2+x+2}\)

\(\left(\frac{x\left(3x+3\right)}{3\left(x-3\right)\left(x+1\right)}-\frac{x+3}{3\left(x-3\right)\left(x+1\right)}+\frac{x-3}{3\left(x+1\right)\left(x-3\right)}\right)\)\(\frac{\left(x+1\right)\left(x-3\right)}{x^2+x+2}\)

=  \(\frac{3\left(x^2+x-2\right)}{3\left(x-3\right)\left(x+1\right)}\)*  \(\frac{\left(x+1\right)\left(x-3\right)}{x^2+x+2}\)  = \(\frac{x^2+x-2}{x^2+x+2}\)

Ta thấy   x2 + x - 2  <   x2 + x + 2

nên M < 1

24 tháng 10 2023

Bài 1.

a)

\((x-2)(2x-1)-(2x-3)(x-1)-2\\=2x^2-x-4x+2-(2x^2-2x-3x+3)-2\\=2x^2-5x+2-(2x^2-5x+3)-2\\=2x^2-5x+2-2x^2+5x-3-2\\=(2x^2-2x^2)+(-5x+5x)+(2-3-2)\\=-3\)

b)

\(x(x+3y+1)-2y(x-1)-(y+x+1)x\\=x^2+3xy+x-2xy+2y-xy-x^2-x\\=(x^2-x^2)+(3xy-2xy-xy)+(x-x)+2y\\=2y\)

Bài 2.

a)

\((14x^3+12x^2-14x):2x=(x+2)(3x-4)\\\Leftrightarrow 14x^3:2x+12x^2:2x-14x:2x=3x^2-4x+6x-8\\ \Leftrightarrow 7x^2+6x-7=3x^2+2x-8\\\Leftrightarrow (7x^2-3x^2)+(6x-2x)+(-7+8)=0\\\Leftrightarrow 4x^2+4x+1=0\\\Leftrightarrow (2x)^2+2\cdot 2x\cdot 1+1^2=0\\\Leftrightarrow (2x+1)^2=0\\\Leftrightarrow 2x+1=0\\\Leftrightarrow 2x=-1\\\Leftrightarrow x=\frac{-1}2\)

b)

\((4x-5)(6x+1)-(8x+3)(3x-4)=15\\\Leftrightarrow 24x^2+4x-30x-5-(24x^2-32x+9x-12)=15\\\Leftrightarrow 24x^2-26x-5-(24x^2-23x-12)=15\\\Leftrightarrow 24x^2-26x-5-24x^2+23x+12=15\\\Leftrightarrow -3x+7=15\\\Leftrightarrow -3x=8\\\Leftrightarrow x=\frac{-8}3\\Toru\)