K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Hắc hắc :P Cứ làm từ từ sẽ thành công em ạ :D

\(=\frac{a+b+a-b}{a^2-b^2}+\frac{2a}{a^2+b^2}+\frac{4a^3}{a^4+b^4}+\frac{8a^7}{a^8+b^8}\)

\(=\frac{2a\left(a^2+b^2\right)+2a\left(a^2-b^2\right)}{a^4-b^4}+\frac{4a^3}{a^4+b^4}+\frac{8a^7}{a^8+b^8}\)

\(=\frac{4a^3\left(a^4+b^4\right)+4a^3\left(a^4-b^4\right)}{a^8-b^8}+\frac{8a^7}{a^8+b^8}\)

\(=\frac{8a^7\left(a^8+b^8\right)+8a^7\left(a^8-b^8\right)}{\left(a^8-b^8\right)\left(a^8+b^8\right)}\)

\(=\frac{16a^{15}}{a^{16}-b^{16}}\)

NV
15 tháng 11 2018

Đây là câu a/

https://hoc24.vn/hoi-dap/question/693692.html?pos=1903228

Còn câu b thì như sau:

Trước hết, nghi ngờ bạn ghi sai đề ở con này \(\dfrac{1}{a^2+7a+9}\) , số 9 phải là số 12 mới hợp lý. Mình tự sửa lại đề, còn nếu đề đúng như bạn chép thì bạn giữ nguyên nó, phần còn lại rút gọn được còn đâu thì quy đồng giải trâu thôi, chẳng cách nào với đề xấu kiểu ấy cả.

\(B=\dfrac{1}{a\left(a+1\right)}+\dfrac{1}{\left(a+1\right)\left(a+2\right)}+\dfrac{1}{\left(a+2\right)\left(a+3\right)}+\dfrac{1}{\left(a+3\right)\left(a+4\right)}+\dfrac{1}{\left(a+4\right)\left(a+5\right)}\)

\(B=\dfrac{1}{a}-\dfrac{1}{a+1}+\dfrac{1}{a+1}-\dfrac{1}{a+2}+\dfrac{1}{a+2}-\dfrac{1}{a+3}+\dfrac{1}{a+3}-\dfrac{1}{a+4}+\dfrac{1}{a+4}-\dfrac{1}{a+5}\)

\(B=\dfrac{1}{a}-\dfrac{1}{a+5}=\dfrac{5}{a\left(a+5\right)}\)

15 tháng 11 2018

đúng là mk ghi sai đề thật

27 tháng 11 2016

\(A=\frac{a+b}{a^3+b^3}=\frac{a+b}{\left(a+b\right)\left(a^2-ab+b^2\right)}=\frac{1}{a^2-ab+b^2}\)

\(C=\frac{2ab-b}{8a^3-1}=\frac{b\left(2a-1\right)}{\left(2a-1\right)\left(4a^2+2a+1\right)}=\frac{b}{4a^2+2a+1}\)

Câu b xem lại đề đi nhé

27 tháng 11 2016

cảm ơn bạn nhé

19 tháng 7 2017

a) \(a^4-5a^2+4=\)\(\left(a^4-4a^2\right)-\left(a^2-4\right)=a^2\left(a^2-4\right)-\left(a^2-4\right)=\left(a^2-1\right)\left(a^2-4\right)\)

\(=\left(a-1\right)\left(a+1\right)\left(a-2\right)\left(a+2\right)\)

\(a^4-a^2+4a-4=a^2\left(a^2-1\right)+4\left(a-1\right)=a^2\left(a-1\right)\left(a+1\right)+4\left(a-1\right)\)

\(=\left(a-1\right)\left[a^2\left(a+1\right)+4\right]=\left(a-1\right)\left(a^3+a^2+4\right)\)

\(a^3+a^2+4=\left(a^3+2a^2\right)-\left(a^2+2a\right)+\left(2a+4\right)=a^2\left(a+2\right)-a\left(a+2\right)+2\left(a+2\right)\)

\(=\left(a^2-a+2\right)\left(a+2\right)\)

\(N=\frac{\left(a-1\right)\left(a+1\right)\left(a-2\right)\left(a+2\right)}{\left(a-1\right)\left(a+2\right)\left(a^2-a+2\right)}=\frac{\left(a+1\right)\left(a-2\right)}{a^2-a+2}\)

17 tháng 5 2020

em chịu

24 tháng 12 2018

Sửa đề:

\(\frac{1}{a-b}+\frac{1}{a+b}+\frac{2a}{a^2+b^2}+\frac{4a^3}{a^4+b^4}+\frac{8a^7}{a^8+b^8}\)

\(=\frac{a+b+a-b}{\left(a-b\right)\left(a+b\right)}+\frac{2a}{a^2+b^2}+\frac{4a^3}{a^4+b^4}+\frac{8a^7}{a^8+b^8}\)

\(=\frac{2a}{a^2-b^2}+\frac{2a}{a^2+b^2}+\frac{4a^3}{a^4+b^4}+\frac{8a^7}{a^8+b^8}\)

\(=\frac{2a\left(a^2-b^2+a^2+b^2\right)}{\left(a^2-b^2\right)\left(a^2+b^2\right)}+\frac{4a^3}{a^4+b^4}+\frac{8a^7}{a^8+b^8}\)

\(=\frac{2a.2a^2}{\left(a^2-b^2\right)\left(a^2+b^2\right)}+\frac{4a^3}{a^4+b^4}+\frac{8a^7}{a^8+b^8}\)

\(=\frac{4a^3}{a^4-b^4}+\frac{4a^3}{a^4+b^4}+\frac{8a^7}{a^8+b^8}\)

\(=\frac{4a^3\left(a^4+b^4+a^4-b^4\right)}{a^4-b^4}+\frac{8a^7}{a^8+b^8}\)

\(=\frac{4a^3.2a^4}{\left(a^4+b^4\right)\left(a^4-b^4\right)}+\frac{8a^7}{a^8+b^8}\)

\(=\frac{8a^7}{a^8-b^8}+\frac{8a^7}{a^8+b^8}\)

\(=\frac{8a^7\left(a^8+b^8+a^8-b^8\right)}{\left(a^8-b^8\right)\left(a^8+b^8\right)}\)

\(=\frac{16a^{15}}{a^{16}-b^{16}}\)