\(\dfrac{x^4-10x^2+9}{x^4+8x^3+22x^2+24x+9}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 10 2017

Tính chất cơ bản của phân thứcTính chất cơ bản của phân thứcTính chất cơ bản của phân thức

4 tháng 11 2017

\(\dfrac{x^4-10x^2+9}{x^4+8x^3+22x^2+24x+9}\)

\(=\dfrac{x^4-x^2-9x^2+9}{x^4+x^3+7x^3+7x^2+15x^2+15x+9x+9}\)

\(=\dfrac{x^2\left(x^2-1\right)-9\left(x^2-1\right)}{x^3\left(x+1\right)+7x^2\left(x+1\right)+15x\left(x+1\right)+9\left(x+1\right)}\)

\(=\dfrac{\left(x^2-3^2\right)\left(x^2-1\right)}{\left(x+1\right)\left(x^3+7x^2+15x+9\right)}\)

\(=\dfrac{\left(x-3\right)\left(x+3\right)\left(x-1\right)\left(x+1\right)}{\left(x+1\right)\left(x^3+x^2+6x^2+6x+9x+9\right)}\)

= \(\dfrac{\left(x+3\right)\left(x-3\right)\left(x-1\right)\left(x+1\right)}{\left(x+1\right)\left[x^2\left(x+1\right)+6x\left(x+1\right)+9\left(x+1\right)\right]}\)

= \(\dfrac{\left(x+3\right)\left(x-3\right)\left(x-1\right)\left(x+1\right)}{\left(x+1\right)\left(x+1\right)\left(x^2+2.3x+3^2\right)}\)

= \(\dfrac{\left(x-3\right)\left(x-1\right)}{\left(x+1\right)\left(x+3\right)}\)

14 tháng 8 2016

Ta có: \(\frac{\left(x^2\right)^2-10x^2+9}{x^4+6x^3+9x^2+2x^3+12x^2+18x+x^2+6x+9}\)

=  \(\frac{\left(x^2-1\right)\left(x^2-3\right)}{x^2\left(x^2+6x+9\right)+2x\left(x^2+6x+9\right)+\left(x^2+6x+9\right)}\)

=  \(\frac{\left(x-1\right)\left(x+1\right)\left(x-3\right)\left(x+3\right)}{\left(x^2+6x+9\right)\left(x^2+2x+1\right)}\)

=  \(\frac{\left(x-1\right)\left(x+1\right)\left(x-3\right)\left(x+3\right)}{\left(x+3\right)^2.\left(x+1\right)^2}\)

=  \(\frac{\left(x-1\right)\left(x+1\right)\left(x-3\right)\left(x+3\right)}{\left(x+3\right)\left(x+3\right)\left(x+1\right)\left(x+1\right)}\)

=  \(\frac{\left(x-1\right)\left(x-3\right)}{\left(x+1\right)\left(x+3\right)}\)

24 tháng 11 2018

\(a)\frac{2x^3-7x^2-12x+45}{3x^3-19x^2+33x-9}=\frac{(x-3)^2(2x+5)}{(3x-1)(x-3)^2}(ĐK:x\ne3,x\ne\frac{1}{3})\)

                                                \(=\frac{2x+5}{3x-1}\)

Còn bài b bạn tự làm nhé

24 tháng 11 2018

Điều kiện: \(x\ne\left\{-1;-2;-5\right\}\)

\(\frac{x^3+x^2-4x-4}{x^3+8x^2+17x+10}=\frac{x^2\left(x+1\right)-4\left(x+1\right)}{x^2\left(x+1\right)+7x\left(x+1\right)+10\left(x+1\right)}\)

\(=\frac{\left(x+1\right)\left(x^2-4\right)}{\left(x+1\right)\left(x^2+7x+10\right)}\)

\(=\frac{\left(x+1\right)\left(x-2\right)\left(x+2\right)}{\left(x+1\right)\left[x\left(x+2\right)+5\left(x+2\right)\right]}\)

\(=\frac{\left(x+1\right)\left(x-2\right)\left(x+2\right)}{\left(x+1\right)\left(x+2\right)\left(x+5\right)}=\frac{x-2}{x+5}\)

Điều kiện: \(x\ne\left\{3;\frac{1}{3}\right\}\)

\(\frac{2x^3-7x^2-12x+45}{3x^3-19x^2+33x-9}=\frac{2x^3-6x^2-x^2+3x-15x+45}{3x^3-9x^2-10x^2+30x+3x-9}\)

\(=\frac{2x^2\left(x-3\right)-x\left(x-3\right)-15\left(x-3\right)}{3x^2\left(x-3\right)-10x\left(x-3\right)+3\left(x-3\right)}\)

\(=\frac{\left(x-3\right)\left(2x^2-x-15\right)}{\left(x-3\right)\left(3x^2-10x+3\right)}\)

\(=\frac{2x^2-x-15}{3x^2-10x+3}=\frac{2x\left(x-3\right)+5\left(x-3\right)}{3x\left(x-3\right)-\left(x-3\right)}\)

\(=\frac{\left(2x+5\right)\left(x-3\right)}{\left(3x-1\right)\left(x-3\right)}=\frac{2x+5}{3x-1}\)

29 tháng 6 2017

Phép chia các phân thức đại số

28 tháng 6 2017

Phép nhân các phân thức đại số

13 tháng 11 2018

Help me !!!!!

13 tháng 11 2018

Bài 1:

a) \(\dfrac{15xy}{10x^2y}\)

= \(\dfrac{3.5xy}{2.5xyx}\)

= \(\dfrac{3}{2x}\)

d) \(\dfrac{6x\left(x+5\right)^3}{2x^2\left(x+5\right)}\)

= \(\dfrac{3.2x\left(x+5\right)\left(x+5\right)^2}{x.2x\left(x+5\right)}\)

= \(\dfrac{3\left(x+5\right)^2}{x}\)


29 tháng 6 2017

khó qua mik mới hc lớp 7 thôi

15 tháng 8 2018

a , \(16x^2+8x+1=\left(4x\right)^2+2.4x.1+1^2=\left(4x+1\right)^2\)

b , \(x^2-x+\dfrac{1}{4}=x^2-2.x.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2=\left(x-\dfrac{1}{2}\right)^2\)

15 tháng 8 2018

a,(4x+1)2 e,\(\left(\dfrac{3}{2}x-\dfrac{2}{5}\right)^2\)

b,(x-\(\dfrac{1}{2}\))2 g,\(\left(xy+1\right)^2\)

c,(\(x+\dfrac{3}{2}\))2 h,\(\left(x+5\right)^2\)

d,\(\left(x-\dfrac{5}{4}\right)^2\) i,\(-\left(x-6\right)^2\)

k,\(-\left(2x+3\right)^2\)