K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 11 2018

   

 \(a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)\)

\(=a^2\left(b-c\right)-b^2\left(a-c\right)+c^2\left(a-b\right)\)

\(=a^2\left(b-c\right)-b^2\left(a-b\right)-b^2\left(b-c\right)+c^2\left(a-b\right)\)

\(=\left(b-c\right)\left(a^2-b^2\right)-\left(a-b\right)\left(b^2-c^2\right)\)

\(=\left(b-c\right)\left(a-b\right)\left(a+b\right)-\left(a-b\right)\left(b-c\right)\left(b+c\right)\)

\(=\left(a-b\right)\left(b-c\right)\left(a+b-b-c\right)=\left(a-b\right)\left(b-c\right)\left(a-c\right)\)

       \(ab^2-ac^2-b^3+bc^2\)

\(=b^2\left(a-b\right)-c^2\left(a-b\right)\)

\(=\left(a-b\right)\left(b^2-c^2\right)=\left(a-b\right)\left(b-c\right)\left(b+c\right)\)

Vậy \(\frac{a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)}{ab^2-ac^2-b^3+bc^2}\)

\(=\frac{\left(a-b\right)\left(b-c\right)\left(a-c\right)}{\left(a-b\right)\left(b-c\right)\left(b+c\right)}=\frac{a-c}{b+c}\)

20 tháng 11 2018

Có a2(b-c) + b2(c-a) + c2(a-b)

= a2(b-c) - b2(a-c) + c2(a-b)

= a2(b-c) - b2(b-c+a-b) + c2(a-b)

= a2(b-c) - b2(b-c) - b2(a-b) + c2(a-b)

=[a2(b-c) - b2(b-c)] - [b2(a-b) - c2(a-b)]

=(b-c)(a2-b2) - (a-b)(b2-c2)

=(b-c)(a-b)(a+b) - (a-b)(b-c)(b+c)

=(b-c)(a-b)[(a+b)-(b+c)]

=(b-c)(a-b)(a-c)

 Có ab2 - ac2 - b3 + bc2

   = (ab2-ac2) - (b3-bc2)

   =a(b2-c2) - b(b2-c2)

=(b2-c2)(a-b)

=(b-c)(b+c)(a-b)

Có  a2(b-c) + b2(c-a) + c2(a-b)   /   ab2 - ac2 - b3 + bc2

  = (b-c)(a-b)(a-c) / (b-c)(b+c)(a-b)

= (a-c) / (b+c)

13 tháng 6 2016

Mình tính thử a ,b ,c bằng nhau đó

Mình nghĩ là 0,037037037037037037

18 tháng 9 2018

\(\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)

\(=\left(a+b+c\right)\left(ab+bc\right)+\left(a+b+c\right)ac-abc\)

\(=\left(ab+b^2+bc\right)\left(a+c\right)+\left(a+c\right)ac+abc-abc\)

\(=\left(a+c\right)\left(ab+b^2+bc+ac\right)\)

\(=\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

27 tháng 11 2016

\(A=\frac{a+b}{a^3+b^3}=\frac{a+b}{\left(a+b\right)\left(a^2-ab+b^2\right)}=\frac{1}{a^2-ab+b^2}\)

\(C=\frac{2ab-b}{8a^3-1}=\frac{b\left(2a-1\right)}{\left(2a-1\right)\left(4a^2+2a+1\right)}=\frac{b}{4a^2+2a+1}\)

Câu b xem lại đề đi nhé

27 tháng 11 2016

cảm ơn bạn nhé

29 tháng 12 2016

Bạn viết vậy mình không biết đâu là tử đâu là mẫu

29 tháng 12 2016

Sửa đề cho dễ đọc

\(1P=\frac{a^3+b^3+c^3-3abc}{a^2+b^2+c^2-ab-bc-ca}\)

\(\Leftrightarrow1P=\frac{\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)}{a^2+b^2+c^2-ab-bc-ca}=a+b+c\)