Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
ĐKXĐ: \(x\geq 0; x\neq 1\)
Ta có:
\(A=\frac{x+\sqrt{x}+1}{(\sqrt{x}-1)(\sqrt{x}+2)}+\frac{1}{\sqrt{x}-1}+\frac{1}{\sqrt{x}+2}=\frac{x+\sqrt{x}+1}{(\sqrt{x}-1)(\sqrt{x}+2)}+\frac{\sqrt{x}+2}{(\sqrt{x}-1)(\sqrt{x}+2)}+\frac{\sqrt{x}-1}{(\sqrt{x}+2)(\sqrt{x}-1)}\)
\(=\frac{x+\sqrt{x}+1+\sqrt{x}+2+\sqrt{x}-1}{(\sqrt{x}-1)(\sqrt{x}+2)}=\frac{x+3\sqrt{x}+2}{(\sqrt{x}-1)(\sqrt{x}+2)}=\frac{(\sqrt{x}+1)(\sqrt{x}+2)}{(\sqrt{x}-1)(\sqrt{x}+2)}=\frac{\sqrt{x}+1}{\sqrt{x}-1}\)
ĐKXĐ: \(x\ge0;x\ne1\)
\(P=\left(\frac{\sqrt{x}}{\sqrt{x}+1}-\frac{\sqrt{x}}{\sqrt{x}-1}\right):\frac{2}{\sqrt{x}+1}\)
\(=\frac{\sqrt{x}\left(\sqrt{x}-1\right)-\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}:\frac{2}{\sqrt{x}+1}\)
\(=\frac{x-\sqrt{x}+x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}:\frac{2}{\sqrt{x}+1}\)
\(=\frac{-2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}.\frac{\sqrt{x}+1}{2}\)
\(=\frac{-\sqrt{x}}{\sqrt{x}-1}\)
Để p = -2 \(\Rightarrow\frac{-\sqrt{x}}{\sqrt{x}-1}=-2\)
\(\frac{-\sqrt{x}}{\sqrt{x}-1}=-2\)
\(\Rightarrow-\sqrt{x}=-2\left(\sqrt{x}-1\right)\)
\(\Rightarrow-\sqrt{x}=-2\sqrt{x}+2\)
\(\Rightarrow-\sqrt{x}+2\sqrt{x}=2\)
\(\Rightarrow\sqrt{x}=2\)
\(\Rightarrow x=4\)
\(M=\frac{2\sqrt{x}-3}{\sqrt{x}-4}-\frac{\sqrt{x}+2}{\sqrt{x}+1}-\frac{2-3\sqrt{x}}{x-3\sqrt{x}-4}\)
\(=\frac{2\sqrt{x}-3}{\sqrt{x}-4}-\frac{\sqrt{x}+2}{\sqrt{x}+1}\)\(+\frac{3\sqrt{x}-2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-4\right)}\)
\(=\frac{\left(2\sqrt{x}-3\right)\left(\sqrt{x}+1\right)-\left(\sqrt{x}-2\right)\left(\sqrt{x}+4\right)+3\sqrt{x}-2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-4\right)}\)
\(=\frac{2x-\sqrt{x}-3-x+2\sqrt{x}+8+3\sqrt{x}-2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-4\right)}\)
\(=\frac{x+4\sqrt{x}+3}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-4\right)}=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-4\right)}\)
\(=\frac{\sqrt{x}+3}{\sqrt{x}-4}\)
=\(\frac{x-2+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+2\right)}.\frac{\sqrt{x}+1}{\sqrt{x}-1}\)
\(=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}{\sqrt{x}\left(\sqrt{x}+2\right)}.\frac{\sqrt{x}+1}{\sqrt{x}-1}\)
\(=\frac{\sqrt{x}+1}{\sqrt{x}}\)
a) Ta có: \(A=\frac{\sqrt{x}+1}{\sqrt{x}-2}+\frac{2\sqrt{x}}{\sqrt{x}+2}+\frac{2+5\sqrt{x}}{4-x}\)
\(=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{2\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\frac{2+5\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\frac{x+3\sqrt{x}+2+2x-4\sqrt{x}-2-5\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\frac{3x-6\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\frac{3\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\frac{3\sqrt{x}}{\sqrt{x}+2}\)