Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c, \(\left(7-3x\right)\left(2x+1\right)=0\)
=> \(7-3x=0\) hoặc \(2x+1=0\)
\(3x=7-0\) hoặc \(2x=0-1\)
\(3x=7\) hoặc \(2x=-1\)
\(x=7:3\) hoặc \(x=-1:2\)
\(x=\dfrac{7}{3}\) hoặc \(x=-0,5\)
Vậy, \(x\in\left\{\dfrac{7}{3};-0,5\right\}\)
\(\frac{x+1}{203}+\frac{x+2}{202}+\frac{x+3}{201}+\frac{x+4}{200}+\frac{x+5}{199}+5=0\)
\(\Leftrightarrow\frac{x+1}{203}+1+\frac{x+2}{202}+1+\frac{x+3}{201}+1+\frac{x+4}{200}+1+\frac{x+5}{199}+1=0\)
\(\Leftrightarrow\frac{x+204}{203}+\frac{x+204}{202}+\frac{x+204}{201}+\frac{x+204}{200}+\frac{x+204}{199}=0\)
\(\Leftrightarrow\left(x+204\right)\left(\frac{1}{203}+\frac{1}{203}+\frac{1}{201}+\frac{1}{200}+\frac{1}{199}\right)=0\)
\(\Leftrightarrow x+204=0\).Do \(\frac{1}{203}+\frac{1}{203}+\frac{1}{201}+\frac{1}{200}+\frac{1}{199}\ne0\)
\(\Leftrightarrow x=-204\)
Ta có :
\(\frac{x+1}{203}+\frac{x+2}{202}+\frac{x+3}{201}+\frac{x+4}{200}+\frac{x+5}{199}+5=0\)
\(\Leftrightarrow\left(\frac{x+1}{203}+1\right)+\left(\frac{x+2}{202}+1\right)+\left(\frac{x+3}{201}+1\right)+\left(\frac{x+4}{200}+1\right)+\left(\frac{x+5}{199}+1\right)=0\)
\(\Leftrightarrow\left(\frac{x+204}{203}\right)+\left(\frac{x+4}{202}\right)+\left(\frac{x+4}{201}\right)+\left(\frac{x+204}{200}\right)+\left(\frac{x+204}{199}\right)=0\)
\(\Leftrightarrow\left(x+204\right)\left(\frac{1}{203}+\frac{1}{202}+\frac{1}{201}+\frac{1}{200}+\frac{1}{199}\right)=0\)
Dễ thấy \(\left(\frac{1}{203}+\frac{1}{202}+\frac{1}{201}+\frac{1}{200}+\frac{1}{199}\right)\ne0\)
=> x + 204 = 0
<=> x = - 204
Vậy pt có nghiệm x = - 204
Bài 1:
1: \(M=\left|x-1\right|+x+2\)
Trường hợp 1: x>=1
M=x-1+x+2=2x+1
Trường hợp 2: x<1
M=1-x+x+2=3
2: \(N=x-3+\left|x-3\right|\)
Trường hợp 1: x>=3
\(N=x-3+x-3=2x-6\)
Trường hợp 2: x<3
\(N=x-3+3-x=0\)
3: \(P=2x-1-\left|x-2\right|\)
Trường hợp 1: x<2
\(P=2x-1-\left(2-x\right)=2x-1-2+x=3x-3\)
TRường hợp 2: x>=2
\(P=2x-1-x+2=x+1\)
a)hình như đề sai thì phải
sửa lại
\(\left(\dfrac{1}{7}-\dfrac{2}{5}\right).\dfrac{2016}{2017}+\left(\dfrac{13}{7}+\dfrac{2}{5}\right).\dfrac{2016}{2017}\)
=\(\dfrac{2016}{2017}.\left(\dfrac{1}{7}-\dfrac{2}{5}+\dfrac{13}{7}+\dfrac{2}{5}\right)\)
=\(\dfrac{2016}{2017}.2=\dfrac{4032}{2017}\)
\(H=-\left|x\right|+7\)
Vì \(-\left|x\right|\le0\Rightarrow-\left|x\right|+7\le7\)
Dấu "=" xảy ra khi \(\left|x\right|=0\)
\(\Rightarrow x=0\)
Vậy \(Max_H=7\) khi \(x=0.\)
\(K=-\left|x-5\right|-2\)
\(-\left|x-5\right|\le0\Rightarrow-\left|x-5\right|-2\le-2\)
Dấu "=" xảy ra khi \(\left|x-5\right|=0\)
\(\Rightarrow x-5=0\)
\(\Rightarrow x=5\)
Vậy \(Max_K=-2\) khi \(x=5.\)
\(E=7-\left|x+4\right|\)
\(-\left|x+4\right|\le0\Rightarrow7-\left|x+4\right|\le7\)
Dấu "=" xảy ra khi \(\left|x+4\right|=0\)
\(\Rightarrow x=-4\)
Vậy \(Max_E=7\) khi \(x=-4.\)
\(M=\left|x\right|+5\)
Vì \(\left|x\right|\ge0\Rightarrow\left|x\right|+5\ge5\)
Dấu "=" xảy ra khi \(\left|x\right|=0\)
\(\Rightarrow x=0\)
Vậy \(Min_M=5\) khi \(x=0.\)
2 câu kia tương tự.
H = -|x| + 7
Có : \(-\left|x\right|\le0\)
<=> \(-\left|x\right|+7\le7\)
=> MaxH = 7
<=> -|x| = 0
<=> x = 0
K = -|x - 5| - 2
Có : \(-\left|x-5\right|\le0\)
<=> \(-\left|x-5\right|-2\le-2\)
=> MaxK = -2
<=> -|x - 5| = 0
<=> x = 5
E = 7 - |x + 4|
Có : \(\left|x+4\right|\ge0\)
<=> \(7-\left|x+4\right|\le7\)
=> MaxE = 7
<=> |x + 4| = 0
<=> x = -4
\(\frac{x}{2013}-\frac{1}{10}-\frac{1}{15}-\frac{1}{21}-...-\frac{1}{120}=\frac{5}{8}\)
\(\Leftrightarrow\frac{x}{2013}-\left(\frac{2}{20}+\frac{2}{30}+\frac{2}{42}+...+\frac{2}{240}\right)=\frac{5}{8}\)
\(\Leftrightarrow\frac{x}{2013}-\left[2\left(\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{15.16}\right)\right]=\frac{5}{8}\)
\(\Leftrightarrow\frac{x}{2013}-\left[2\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{15}-\frac{1}{16}\right)\right]=\frac{5}{8}\)
\(\Leftrightarrow\frac{x}{2013}-2\left(\frac{1}{4}-\frac{1}{16}\right)=\frac{5}{8}\)
\(\Leftrightarrow\frac{x}{2013}-\frac{3}{8}=\frac{5}{8}\)
\(\Rightarrow\frac{x}{2013}=\frac{5}{8}+\frac{3}{8}=1\Rightarrow x=2013\)
Vậy x = 2013
a) Dễ thấy |x-5| = |5-x|
Áp dụng BĐT: |a| + |b| \(\ge\) |a+b| ta có
|x+3| + |5-x| \(\ge\) |x+3+5-x| = 8
=> |x+3| + |5-x| \(\ge\) 8
Dấu "=" xảy ra khi -3 < x < 5
b) Dễ thấy |x-8| = |8-x|; |x-7| = |7-x|
Áp dụng BĐT: |a| + |b| \(\ge\) |a+b| ta có
|x+2| + |8-x| \(\ge\) |x+2+8-x| = 10
=> |x+2| + |8-x| \(\ge\) 10
Dấu "=" xảy ra khi 2 < x < 8
|x+5| + |7-x| \(\ge\) |x+5+7-x| = 12
=> |x+5| + |7-x| \(\ge\) 12
Dấu "=" xảy ra khi -5 < x < 7
Tìm được x trong khoảng 2 < x < 6 và MinB = 12
c) Dễ thấy |x-5| = |5-x|;
Áp dụng BĐT...
ta có : \(\left\{{}\begin{matrix}\left|x+3\right|\ge0\\\left|x-2\right|+\left|5-x\right|\ge3\end{matrix}\right.\)
=> C \(\ge\)3
Dấu "=" xảy ra khi x = 3