\(\left(\frac{1}{1-x}+\frac{1}{1+x}\right)\div\left(\frac{1}{1-x}-\frac{1}{1+x}\right...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(=\left(\dfrac{-1}{x-1}+\dfrac{1}{x+1}\right):\left(\dfrac{-1}{x-1}-\dfrac{1}{x+1}\right)-\dfrac{3}{2x}\)

\(=\dfrac{-x-1+x-1}{\left(x-1\right)\left(x+1\right)}:\dfrac{-x-1-x+1}{\left(x-1\right)\left(x+1\right)}-\dfrac{3}{2x}\)

\(=\dfrac{-2}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{\left(x-1\right)\left(x+1\right)}{-2x}-\dfrac{3}{2x}\)

\(=\dfrac{1}{x}-\dfrac{3}{2x}=\dfrac{2-3}{2x}=\dfrac{-1}{2x}\)

29 tháng 12 2017

\(\left(\frac{2x^2+1}{x^2-1}-\frac{1}{x-1}\right):\left(1-\frac{x^2+4}{x^2+x+1}\right)\)

\(=\left[\frac{2x^2+1}{\left(x-1\right)\left(x+1\right)}-\frac{x+1}{\left(x-1\right)\left(x+1\right)}\right]:\frac{x^2+x+1-x^2-4}{x^2+x+1}\)

\(=\frac{2x^2+1-x-1}{\left(x-1\right)\left(x+1\right)}:\frac{x-3}{x^2+x+1}\)

\(=\frac{2x^2-x}{\left(x-1\right)\left(x+1\right)}.\frac{x^2+x+1}{x-3}\)

bài này đến đây cậu làm tiếp chư tôi ko tách ra đc nữa

a: \(P=\dfrac{4x-6-x+1}{2x-3}:\left(\dfrac{6x+1}{2x^2-3x+2x-3}+\dfrac{x}{x+1}\right)\)

\(=\dfrac{3x-5}{2x-3}:\left(\dfrac{6x+1}{\left(x+1\right)\left(2x-3\right)}+\dfrac{x}{x+1}\right)\)

\(=\dfrac{3x-5}{2x-3}:\dfrac{6x+1+2x^2-3x}{\left(x+1\right)\left(2x-3\right)}\)

\(=\dfrac{3x-5}{\left(2x-3\right)}\cdot\dfrac{\left(2x-3\right)\left(x+1\right)}{2x^2+3x+1}\)

\(=\dfrac{3x-5}{2x+1}\)

b: \(P-\dfrac{3}{2}=\dfrac{3x-5}{2x+1}-\dfrac{3}{2}=\dfrac{6x-10-6x-3}{2\left(2x+1\right)}=\dfrac{-7}{2\left(2x+1\right)}\)

 

27 tháng 2 2020

\(\left(\frac{1}{x+1}-\frac{3}{x^3+1}+\frac{3}{x^2-x+1}\right):\frac{3x^2-3x+3}{\left(x+1\right)\left(x+2\right)}-\frac{2x-2}{x^2+2x}\left(x\ne-1;x\ne0;x\ne-2\right)\)

\(=\left(\frac{1}{x+1}-\frac{3}{\left(x+1\right)\left(x^2-x+1\right)}+\frac{3}{x^2-x+1}\right):\frac{3x^3-3x+3}{\left(x+1\right)\left(x+2\right)}-\frac{2\left(x-1\right)}{x\left(x+2\right)}\)

\(=\left(\frac{x^2-x+1}{\left(x+1\right)\left(x^2-x+1\right)}-\frac{3}{\left(x+1\right)\left(x^2-x+1\right)}+\frac{3x+3}{\left(x+1\right)\left(x^2-x+1\right)}\right)\)\(:\frac{3x^2-3x+3}{\left(x+1\right)\left(x+2\right)}-\frac{2\left(x-1\right)}{x\left(x+2\right)}\)

\(=\frac{x^2-x+1-3+3x+3}{\left(x+1\right)\left(x^2-x+1\right)}:\frac{3x^2-3x+3}{\left(x+1\right)\left(x+2\right)}-\frac{2\left(x-1\right)}{x\left(x+2\right)}\)

\(=\frac{x^2+2x+1}{\left(x+1\right)\left(x^2-x+1\right)}:\frac{3\left(x^2-x+1\right)}{\left(x+1\right)\left(x+1\right)}-\frac{2\left(x-1\right)}{x\left(x+2\right)}\)

\(=\frac{\left(x+1\right)\left(x+2\right)}{\left(x+1\right)\left(x^2-x+1\right)}\cdot\frac{\left(x+1\right)\left(x+2\right)}{3\left(x^2-x+1\right)}-\frac{2\left(x-1\right)}{x\left(x+2\right)}\)

\(=\frac{\left(x+2\right)^2\left(x+1\right)}{3\left(x^2-x+1\right)^2}-\frac{2\left(x-1\right)}{x\left(x+2\right)}\)

25 tháng 12 2018

\(\left(\frac{1}{x}+1-\frac{3}{x^3+1}-\frac{3}{x^2-x+1}\right)\cdot\frac{3x^2-3x+3}{\left(x+1\right).\left(x+2\right)}-\frac{2x-2}{x^2+2x}\)

\(=\left(\frac{x+1}{x}-\frac{3}{\left(x+1\right).\left(x^2-x+1\right)}+\frac{3.\left(x+1\right)}{\left(x+1\right).\left(x^2-x+1\right)}\right)\cdot\frac{3.\left(x^2-x+1\right)}{\left(x+1\right).\left(x+2\right)}-\frac{2.\left(x-1\right)}{x.\left(x+2\right)}\)

\(=\left[\frac{\left(x+1\right)^2.\left(x^2-x+1\right)-3x+3x^2+3x}{x.\left(x+1\right).\left(x^2-x+1\right)}\right]\cdot\frac{3.\left(x^2-x+1\right)}{\left(x+1\right).\left(x+2\right)}-\frac{2.\left(x-1\right)}{x.\left(x+2\right)}\)

\(=\left[\frac{x^4+x^3+x+1+3x^2}{x.\left(x+1\right).\left(x^2-x+1\right)}\right]\cdot\frac{3.\left(x^2-x+1\right)}{\left(x+1\right).\left(x+2\right)}-\frac{2.\left(x-1\right)}{x.\left(x+2\right)}\)

\(=\frac{3x^4+3x^3+3x+3+9x^2}{x.\left(x+1\right)^2.\left(x+2\right)}-\frac{2.\left(x-1\right)}{x.\left(x+2\right)}=\frac{3x^4+3x^3+3x+3+9x^2}{x.\left(x+1\right)^2.\left(x+2\right)}-\frac{2x^3+2x^2-2x-2}{x.\left(x+1\right)^2.\left(x+2\right)}\)

\(=\frac{3x^4+x^3+7x^2+5x+5}{x.\left(x+1\right)^2.\left(x+2\right)}\)