Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(2+\dfrac{5-2\sqrt{5}}{2-\sqrt{5}}\right)\left(2+\dfrac{5+3\sqrt{5}}{3+\sqrt{5}}\right)\)
\(A=\left[2-\dfrac{\sqrt{5}\left(\sqrt{5}-2\right)}{\sqrt{5}-2}\right]\left[2+\dfrac{\sqrt{5}\left(\sqrt{5}+3\right)}{\sqrt{5}+3}\right]\)
\(A=\left(2-\sqrt{5}\right)\left(2+\sqrt{5}\right)\)
\(A=2^2-\left(\sqrt{5}\right)^2\)
\(A=4-5\)
\(A=-1\)
____
\(B=\left(\dfrac{15}{\sqrt{6}+1}+\dfrac{4}{\sqrt{6}-2}-\dfrac{12}{3-\sqrt{6}}\right)\left(\sqrt{6}+11\right)\)
\(B=\left[\dfrac{15\left(\sqrt{6}-1\right)}{\left(\sqrt{6}+1\right)\left(\sqrt{6}-1\right)}+\dfrac{4\left(\sqrt{6}+2\right)}{\left(\sqrt{6}-2\right)\left(\sqrt{6}+2\right)}-\dfrac{12\left(3+\sqrt{6}\right)}{\left(3+\sqrt{6}\right)\left(3-\sqrt{6}\right)}\right]\left(\sqrt{6}+11\right)\)
\(B=\left[\dfrac{15\left(\sqrt{6}-1\right)}{5}+\dfrac{4\left(\sqrt{6}+2\right)}{2}-\dfrac{12\left(3+\sqrt{6}\right)}{3}\right]\left(\sqrt{6}+11\right)\)
\(B=\left(3\sqrt{6}-3+2\sqrt{6}+4-12-4\sqrt{6}\right)\left(\sqrt{6}+11\right)\)
\(B=\left(\sqrt{6}-11\right)\left(\sqrt{6}+11\right)\)
\(B=6-121\)
\(B=-115\)
a: \(=\dfrac{\sqrt{3}\left(\sqrt{5}-2\right)}{\sqrt{5}-2}-3\sqrt{3}+\dfrac{\sqrt{3}\left(\sqrt{3}+\sqrt{2}\right)}{\sqrt{3}+\sqrt{2}}\)
\(=\sqrt{3}-3\sqrt{3}+\sqrt{3}=-\sqrt{3}\)
b: \(=\left(\left(2-2\sqrt{5}\right)\left(\sqrt{5}+2\right)+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)\)
\(=\left(2\sqrt{5}+4-10-4\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)\)
\(=\left(-2\sqrt{5}+\sqrt{3}-6\right)\left(\sqrt{5}-\sqrt{3}\right)\)
\(=-20+2\sqrt{15}+\sqrt{15}-3-6\sqrt{5}+6\sqrt{3}\)
\(=-23+3\sqrt{15}-6\sqrt{5}+6\sqrt{3}\)
a, \(=>3-\sqrt{2}+\sqrt{50}=3-\sqrt{2}+5\sqrt{2}=3+4\sqrt{2}\)
b, \(=>\dfrac{\sqrt[3]{125.5}}{\sqrt[3]{5}}-\sqrt[3]{\left(-4\right).2}=\sqrt[3]{125}-\sqrt[3]{\left(-2\right)^3}\)
\(=5-\left(-2\right)=7\)
c, \(=>\sqrt{6}.\sqrt{\dfrac{6}{2}}-\sqrt{2}-3\sqrt{4.2}=\sqrt{6}.\sqrt{3}-\sqrt{2}-6\sqrt{2}\)
\(=\sqrt{18}-7\sqrt{2}=3\sqrt{2}-7\sqrt{2}=-4\sqrt{2}\)
d, \(=>\dfrac{\sqrt{3}\left(\sqrt{2}-1\right)}{\sqrt{2}-1}-\dfrac{2}{\sqrt{3}-1}=\sqrt{3}-\dfrac{2}{\sqrt{3}-1}\)
\(=\dfrac{3-\sqrt{3}-2}{\sqrt{3}-1}=\dfrac{1-\sqrt{3}}{\sqrt{3}-1}=-1\)
Câu 1,2 bạn đã đăng và có lời giải rồi
Câu 3:
\(=\frac{(\sqrt{3})^2+(2\sqrt{5})^2-2.\sqrt{3}.2\sqrt{5}}{\sqrt{2}(\sqrt{3}-2\sqrt{5})}=\frac{(\sqrt{3}-2\sqrt{5})^2}{\sqrt{2}(\sqrt{3}-2\sqrt{5})}=\frac{\sqrt{3}-2\sqrt{5}}{\sqrt{2}}\)
a) \(\sqrt{\dfrac{3-\sqrt{5}}{3+\sqrt{5}}}\)
\(=\sqrt{\dfrac{\left(3-\sqrt{5}\right)^2}{\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)}}\)
\(=\dfrac{\sqrt{\left(3-\sqrt{5}\right)^2}}{\sqrt{3^2-\left(\sqrt{5}\right)^2}}\)
\(=\dfrac{\left|3-\sqrt{5}\right|}{\sqrt{9-5}}\)
\(=\dfrac{3-\sqrt{5}}{2}\)
b) \(\sqrt{\dfrac{2-\sqrt{3}}{2+\sqrt{3}}}\)
\(=\sqrt{\dfrac{\left(2-\sqrt{3}\right)^2}{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}}\)
\(=\dfrac{\sqrt{\left(2-\sqrt{3}\right)^2}}{\sqrt{2^2-\left(\sqrt{3}\right)^2}}\)
\(=\dfrac{\left|2-\sqrt{3}\right|}{\sqrt{4-3}}\)
\(=\dfrac{2-\sqrt{3}}{1}\)
\(=2-\sqrt{3}\)
a: \(=\sqrt{\dfrac{\left(3-\sqrt{5}\right)\left(3-\sqrt{5}\right)}{4}}=\dfrac{3-\sqrt{5}}{2}\)
b: \(=\sqrt{\dfrac{\left(2-\sqrt{3}\right)^2}{1}}=2-\sqrt{3}\)
d: \(=\left(-3+3\sqrt{6}+4+2\sqrt{6}-12-4\sqrt{6}\right)\left(\sqrt{6}+11\right)\)
=(căn 6-11)(căn 6+11)
=6-121=-115
1. ĐKXĐ: $x>0; x\neq 9$
\(A=\frac{\sqrt{x}+3+\sqrt{x}-3}{(\sqrt{x}-3)(\sqrt{x}+3)}.\frac{\sqrt{x}-3}{\sqrt{x}}=\frac{2\sqrt{x}}{(\sqrt{x}-3)(\sqrt{x}+3)}.\frac{\sqrt{x}-3}{\sqrt{x}}=\frac{2}{\sqrt{x}+3}\)
2. ĐKXĐ: $x\geq 0; x\neq 4$
\(B=\left[\frac{\sqrt{x}(\sqrt{x}+2)+\sqrt{x}-2}{(\sqrt{x}-2)(\sqrt{x}+2)}+\frac{6-7\sqrt{x}}{(\sqrt{x}-2)(\sqrt{x}+2)}\right](\sqrt{x}+2)\)
\(=\frac{x+3\sqrt{x}-2+6-7\sqrt{x}}{(\sqrt{x}-2)(\sqrt{x}+2)}.(\sqrt{x}+2)=\frac{x-4\sqrt{x}+4}{\sqrt{x}-2}=\frac{(\sqrt{x}-2)^2}{\sqrt{x}-2}=\sqrt{x}-2\)
\(a,\dfrac{\sqrt{2}+\sqrt{3}-1}{2+\sqrt{6}}-\dfrac{\sqrt{2}-\sqrt{3}}{2\sqrt{6}}\left(\dfrac{\sqrt{3}}{2-\sqrt{6}}+\dfrac{\sqrt{3}}{2+\sqrt{6}}\right)-\dfrac{1}{\sqrt{2}}\)
\(=\dfrac{\sqrt{2}+\sqrt{3}-1}{2+\sqrt{6}}-\dfrac{\sqrt{2}-\sqrt{3}}{2\sqrt{6}}\left(\dfrac{\sqrt{3}\left(2+\sqrt{6}\right)+\sqrt{3}\left(2-\sqrt{6}\right)}{\left(2-\sqrt{6}\right)\left(2+\sqrt{2}\right)}\right)-\dfrac{1}{\sqrt{2}}\)
\(=\dfrac{\sqrt{2}+\sqrt{3}-1}{2+\sqrt{6}}-\dfrac{\sqrt{2}-\sqrt{3}}{2\sqrt{6}}\left(\dfrac{2\sqrt{3}+3\sqrt{2}+2\sqrt{3}-3\sqrt{2}}{4-6}\right)-\dfrac{1}{\sqrt{2}}\)
\(=\dfrac{\sqrt{2}+\sqrt{3}-1}{2+\sqrt{6}}-\dfrac{\sqrt{2}-\sqrt{3}}{2\sqrt{2}.\sqrt{3}}.\dfrac{4\sqrt{3}}{-2}-\dfrac{1}{\sqrt{2}}\)
\(=\dfrac{\sqrt{2}+\sqrt{3}-1}{\sqrt{2}\left(\sqrt{2}+\sqrt{3}\right)}+\dfrac{\sqrt{2}-\sqrt{3}}{\sqrt{2}}-\dfrac{1}{\sqrt{2}}\)
\(=\dfrac{\sqrt{2}+\sqrt{3}-1}{\sqrt{2}\left(\sqrt{2}+\sqrt{3}\right)}+\dfrac{\sqrt{2}-\sqrt{3}-1}{\sqrt{2}}\)
\(=\dfrac{\sqrt{2}+\sqrt{3}-1+\left(\sqrt{2}-\sqrt{3}-1\right)\left(\sqrt{2}+\sqrt{3}\right)}{\sqrt{2}\left(\sqrt{2}+\sqrt{3}\right)}\)
\(=\dfrac{\sqrt{2}+\sqrt{3}-1+2+\sqrt{6}-\sqrt{6}-3-\sqrt{2}-\sqrt{3}}{\sqrt{2}\left(\sqrt{2}+\sqrt{3}\right)}\)
\(=\dfrac{-2}{\sqrt{2}\left(\sqrt{2}+\sqrt{3}\right)}\)
\(=-\dfrac{\sqrt{2}}{\sqrt{2}+\sqrt{3}}\)
\(=\left(\dfrac{3\sqrt{6}}{2}+\dfrac{2}{3}\sqrt{6}-2\sqrt{6}\right)\cdot\left(\sqrt{6}-\sqrt{6}-2\sqrt{3}\right)\)
\(=-2\sqrt{3}\cdot\dfrac{1}{6}\sqrt{6}=-\dfrac{1}{3}\sqrt{18}=-\sqrt{2}\)