Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c,\(\left(\frac{\sqrt{1+a}}{\sqrt{1+a}-\sqrt{1-a}}+\frac{1-a}{\sqrt{1-a^2}-1+a}\right)\left(\sqrt{\frac{1}{a^2}-1}-\frac{1}{a}\right)\)
\(=\left(\frac{\sqrt{1+a}}{\sqrt{1+a}-\sqrt{1-a}}+\frac{\sqrt{1-a}.\sqrt{1-a}}{\sqrt{1-a}\left(\sqrt{1+a}-\sqrt{1-a}\right)}\right)\left(\frac{\sqrt{1-a^2}-1}{a}\right)\)
\(=\frac{\left(\sqrt{1+a}+\sqrt{1-a}\right)^2}{\left(1+a\right)-\left(1-a\right)}.\frac{\left(\sqrt{1-a^2}-1\right)}{a}=-1\)
M chỉ làm tiếp thôi nha, ko chép lại đề với đk đâu
a,
\(=\frac{a+2\sqrt{ab}+b-4\sqrt{ab}}{\sqrt{a}-\sqrt{b}}-\)\(\frac{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{ab}}\)
\(=\frac{a-2\sqrt{ab}+b}{\sqrt{a}-\sqrt{b}}-\left(\sqrt{a}-\sqrt{b}\right)\)
\(=\frac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\sqrt{a}-\sqrt{b}}-\sqrt{a}+\sqrt{b}\)
\(=\sqrt{a}-\sqrt{b}-\sqrt{a}+\sqrt{b}\)
\(=0\)
b,
\(=\left(a-b\right)\left(\sqrt{\frac{a+b}{a-b}}-1\right)\left(a-b\right)\left(\sqrt{\frac{a+b}{a-b}}+1\right)\)
\(=\left(a-b\right)^2\left(\frac{a+b}{a-b}-1\right)\)
\(=\left(a-b\right)^2\cdot\frac{a+b-a+b}{a-b}\)
\(=\left(a-b\right)2b=2ab-2b^2\)
mi tích tau tau tích mi xong tau trả lời nka
việt nam nói là làm
\(=\left(\frac{a+\sqrt{a}+1}{a+1}\right):\left(\frac{1}{\sqrt{a}-1}-\frac{2\sqrt{a}}{\sqrt{a}\left(a+1\right)-\left(a+1\right)}\right)\)
\(=\left(\frac{a+\sqrt{a}+1}{a+1}\right):\left(\frac{1}{\sqrt{a}-1}-\frac{2\sqrt{a}}{\left(\sqrt{a}-1\right)\left(a+1\right)}\right)\)
\(=\left(\frac{a+\sqrt{a}+1}{a+1}\right):\left(\frac{a+1-2\sqrt{a}}{\left(\sqrt{a}-1\right)\left(a+1\right)}\right)\)
\(=\frac{a+\sqrt{a}+1}{a+1}.\frac{\left(\sqrt{a}-1\right)\left(a+1\right)}{a+1-2\sqrt{a}}\)
\(=\frac{\left(a+1\right)\left(a+\sqrt{a}+1\right)}{a-2\sqrt{a}+1}\)
\(=\frac{a^2+a\sqrt{a}+2\text{a}+\sqrt{a}+1}{a-2\sqrt{a}+1}\)
\(=\frac{\left(a+\sqrt{a}+1\right)\left(a+1\right)}{a-2\sqrt{a}+1}\)
câu a đã có người làm rồi nên mình không làm
tick cho mình nha
\(\frac{\left(a-b\right)\left(\sqrt{a}-\sqrt{b}\right)-\left(\sqrt{a}-\sqrt{b}\right)^2\left(\sqrt{a}+\sqrt{b}\right)}{a-b}=\frac{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)^2\left(1-1\right)}{a-b}=0\)
\(a,A=\frac{1-\sqrt{a^3}}{a-1}=-\frac{\sqrt{a^3}-1}{a-1}.\)
\(=\frac{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}=\frac{a+\sqrt{a}+1}{\sqrt{a}+1}\)
\(b,B=3\sqrt{\frac{12\left(a-2\right)^2}{27}}=\sqrt{9}.\sqrt{\frac{12\left(a-2\right)^2}{27}}\)
\(=\sqrt{\frac{9.3.4.\left(x-2\right)^2}{27}}=2\sqrt{\left(x-2\right)^2}=2.|x-2|\)
\(c,C=\left(a-b\right)\sqrt{\frac{ab}{\left(a-b\right)^2}}=\sqrt{\frac{\left(a-b\right)^2ab}{\left(a-b\right)^2}}=\sqrt{ab}\)
bỏ số 14 cuối nha mọi ng, mình nhầm
Tớ giải bừa
\(\left(a-b\right)^2\left(\sqrt{\frac{a+b}{a-b}}+1\right)\left(\sqrt{\frac{a+b}{a-b}}-1\right)\)
\(=\left(a-b\right)^2\left(\sqrt{\frac{a+b}{a-b}}\right)^2-1^2\)
\(=\left(a-b\right)^2\left(\frac{a+b}{a-b}-1\right)\)
\(=2ab-2b^2\)