K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 8 2018

\(\left(2x+y\right)\left(4x^2-2xy+y^2\right)+\left(3x-y\right)\left(9x^2+3xy+y^2\right)-35\left(x-1\right)\left(x^2+x+1\right)\)

\(=8x^3+y^3+27x^3-y^3-35\left(x^3-1\right)\)

\(=35x^3-35x^3+35\)

\(=35\)

20 tháng 4 2017

a) (x + 3)(x2 – 3x + 9) – (54 + x3) = (x + 3)(x2 – 3x + 32 ) - (54 + x3)

= x3 + 33 - (54 + x3)

= x3 + 27 - 54 - x3

= -27

b) (2x + y)(4x2 – 2xy + y2) – (2x – y)(4x2 + 2xy + y2)

= (2x + y)[(2x)2 – 2 . x . y + y2] – (2x – y)(2x)2 + 2 . x . y + y2]

= [(2x)3 + y3]- [(2x)3 - y3]


= (2x)3 + y3- (2x)3 + y3= 2y3

20 tháng 4 2017

Bài giải:

a) (x + 3)(x2 – 3x + 9) – (54 + x3) = (x + 3)(x2 – 3x + 32 ) - (54 + x3)

= x3 + 33 - (54 + x3)

= x3 + 27 - 54 - x3

= -27

b) (2x + y)(4x2 – 2xy + y2) – (2x – y)(4x2 + 2xy + y2)

= (2x + y)[(2x)2 – 2 . x . y + y2] – (2x – y)(2x)2 + 2 . x . y + y2]

= [(2x)3 + y3]- [(2x)3 - y3]

= (2x)3 + y3- (2x)3 + y3= 2y3

17 tháng 7 2018

\((2x+y) (4x^2-2xy+y^2)-(3x-y)(9x^2+3xy+y^2) =8x^3+y^3-9x^3+y^3=17x^3\)

17 tháng 7 2018

\(\left(2x+y\right)\left(4x^2-2xy+y^2\right)-\left(3x-y\right)\left(9x^2+3xy+y^2\right)\)

\(=\left(2x+y\right)\left[\left(2x\right)^2-2xy+y^2\right]-\left(3x-y\right)\left[\left(3x\right)^2+3xy+y^2\right]\)

\(=\left(2x\right)^3+y^3-\left[\left(3x\right)^3-y^3\right]\)

\(=8x^3+y^3-27x^3+y^3\)

\(=-19x^3+2y^3\)

b: \(=\dfrac{1}{\left(x+1\right)\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(x+3\right)}\)

\(=\dfrac{\left(x+2\right)\left(x+3\right)+\left(x+1\right)\left(x+3\right)+\left(x+2\right)\left(x+1\right)}{\left(x+2\right)^2\cdot\left(x+1\right)\left(x+3\right)}\)

\(=\dfrac{x^2+5x+6+x^2+4x+3+x^2+3x+2}{\left(x+2\right)^2\cdot\left(x+1\right)\left(x+3\right)}\)

\(=\dfrac{3x^2+12x+11}{\left(x+2\right)^2\cdot\left(x+1\right)\left(x+3\right)}\)

1 tháng 10 2017

a, (x+3)(x2-3x+9) - (54+x3)

=x3 + 27 - 54 - x3= - 27

b, (2x +y)(4x2-2xy+y2)-(2x-y)(4x2+2xy+y2)

=8x3+y3 - (8x3 -y3)=2y3

b: Ta có: \(\left(4x-y\right)\left(4x+y\right)-2\left(3x-2y\right)^2+\left(x-3y\right)^2\)

\(=16x^2-y^2-2\left(9x^2-12xy+4y^2\right)+x^2-6xy+9y^2\)

\(=17x^2-6xy+8y^2-18x^2+24xy-8y^2\)

\(=-x^2+18xy\)

c: Ta có: \(\left(2a-3b+4c\right)\left(2a-3b-4c\right)\)

\(=\left(2a-3b\right)^2-16c^2\)

\(=4a^2-12ab+9b^2-16c^2\)

19 tháng 6 2018

Bạn coi lại đề giùm đi.

19 tháng 6 2018

\(18x^2-6x-9x+3-18x^2+2x-27x+3=-6.\)

\(-15x+12+2x=0\)

\(-13x=-12\Leftrightarrow x=\frac{13}{12}\)

12 tháng 7 2017

a) \(3x\left(x-2\right)-5x\left(1-x\right)-8\left(x^2-3\right)\)

\(=3x^2-6x-5x+5x^2-8x^2+24\)

\(=24-11x\)

b) \(\left(4x^2-3y\right)\cdot2y-\left(3x^2-4y\right)\cdot3y\)

\(=8x^2y-6y^2-9x^2y+12y^2\)

\(=6y^2-x^2y\)

c) \(3y^2\left[\left(2x-1\right)+y+1\right]-y\left(1-y-y^2\right)+y\)

\(=3y^2\cdot\left(2x-1+y+1\right)-y\cdot\left(1-y-y^2\right)+y\)

\(=6xy^2-3y^2+3y^3+3y^2-y+y^2+y^3+y\)

\(=4y^3+y^2+6xy^2\)