Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
ĐKXĐ: $x>0; x\neq 1$
\(P=\frac{1}{\sqrt{x}+1}+\frac{x}{\sqrt{x}(1-\sqrt{x})}=\frac{1}{\sqrt{x}+1}+\frac{\sqrt{x}}{1-\sqrt{x}}\)
\(=\frac{1-\sqrt{x}+\sqrt{x}(\sqrt{x}+1)}{(\sqrt{x}+1)(1-\sqrt{x})}=\frac{x+1}{1-x}\)
b. Khi $x=\frac{1}{\sqrt{2}}$ thì:
\(P=\frac{\frac{1}{\sqrt{2}}+1}{1-\frac{1}{\sqrt{2}}}=3+2\sqrt{2}\)
`P=(1+5/(sqrtx-2)).(sqrtx-(x+2sqrtx+4)/(sqrtx+3))`
`=((sqrtx-2+5)/(sqrtx-2)).((x+3sqrtx-x-2sqrtx-4)/(sqrtx+3))`
`=(sqrtx+3)/(sqrtx-2).(sqrtx-4)/(sqrtx+3)`
`=(sqrtx-4)/(sqrtx-2)`
\(B=\dfrac{2\sqrt{x}-6\sqrt{x}+x+3\sqrt{x}-3x-9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{-3\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}=\dfrac{-3}{\sqrt{x}-3}\)
\(B=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\dfrac{3\sqrt{x}-9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\\ B=\dfrac{3\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\dfrac{3}{\sqrt{x}+3}\)
Bài 8:
a: Ta có: \(E=\left(\dfrac{x+1}{x-1}-\dfrac{x-1}{x+1}\right):\left(\dfrac{1}{x+1}+\dfrac{x}{x-1}+\dfrac{2}{x^2-1}\right)\)
\(=\dfrac{x^2+2x+1-x^2+2x-1}{\left(x-1\right)\left(x+1\right)}:\dfrac{x-1+x^2+x+2}{\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{4x}{x^2+2x+1}\)
b: Thay x=3 vào E, ta được:
\(E=\dfrac{4\cdot3}{\left(3+1\right)^2}=\dfrac{12}{4^2}=\dfrac{3}{4}\)
Thay x=-3 vào E, ta được:
\(E=\dfrac{4\cdot\left(-3\right)}{\left(-3+1\right)^2}=\dfrac{-12}{4}=-3\)
\(A=\left(\sqrt{2}-8\sqrt{32}+2\sqrt{450}\right):\left(-3\sqrt{8}\right)\)
\(=\left(\sqrt{2}-32\sqrt{2}+30\sqrt{2}\right):\left(-6\sqrt{2}\right)\)
\(=\sqrt{2}\left[\left(1-32+30\right):\left(-6\right)\right]\)
\(=\sqrt{2}\left[\left(-1\right):\left(-6\right)\right]\)
\(=\sqrt{2}.\dfrac{1}{6}\)
\(=\dfrac{\sqrt{2}}{6}\)
Với `x >= 0,x \ne 1` có:
`C=A/B=A:B=[\sqrt{x}+1]/[x+\sqrt{x}+1]:(\sqrt{x}/[x\sqrt{x}-1]+1/[\sqrt{x}-1])`
`C=[\sqrt{x}+1]/[x+\sqrt{x}+1]:[\sqrt{x}+x+\sqrt{x}+1]/[(\sqrt{x}-1)(x+\sqrt{x}+1)]`
`C=[\sqrt{x}+1]/[x+\sqrt{x}+1].[(\sqrt{x}-1)(x+\sqrt{x}+1)]/[x+2\sqrt{x}+1]`
`C=[\sqrt{x}+1]/[x+\sqrt{x}+1].[(\sqrt{x}-1)(x+\sqrt{x}+1)]/[(\sqrt{x}+1)^2]`
`C=[\sqrt{x}-1]/[\sqrt{x}+1]`
1.Thế \(x=4\) vào A, ta được:
\(A=\dfrac{\sqrt{4}+1}{4+\sqrt{4}+1}=\dfrac{2+1}{4+2+1}=\dfrac{3}{7}\)
2.
\(B=\dfrac{\sqrt{x}}{x\sqrt{x}-1}+\dfrac{1}{\sqrt{x}-1}\)
\(B=\dfrac{\sqrt{x}}{\sqrt{x}^3-1}+\dfrac{1}{\sqrt{x}-1}\)
\(B=\dfrac{\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\dfrac{1}{\sqrt{x}-1}\)
\(B=\dfrac{\sqrt{x}+\left(x+\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(B=\dfrac{x+2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(B=\dfrac{\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(C=\dfrac{A}{B}\)
\(C=\dfrac{\sqrt{x}+1}{x+\sqrt{x}+1}:\dfrac{\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(C=\dfrac{\sqrt{x}+1}{x+\sqrt{x}+1}.\dfrac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)^2}\)
\(C=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)
ĐKXĐ: x>0; x ≠ 1
P = \(\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}-\dfrac{\sqrt{x}-1}{\sqrt{x}+1}+4\sqrt{x}\right)\left(\sqrt{x}-\dfrac{1}{\sqrt{x}}\right)\)
= \(\dfrac{x+2\sqrt{x}+1-x+2\sqrt{x}-1+4x\sqrt{x}-4\sqrt{x}}{x-1}.\dfrac{x-1}{\sqrt{x}}\)
= \(\dfrac{4x\sqrt{x}}{\sqrt{x}}\)= 4x
Vậy P = 4x với x > 0; x ≠ 1
C=\(\left(\frac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}-\frac{\sqrt{x}-1}{\left(\sqrt{x}+1\right).\left(\sqrt{x}-1\right)}\right).\frac{\sqrt{x}+1}{\sqrt{x}}\)
C=\(\frac{\left(\sqrt{x}+2\right).\left(x-1\right)-\left(\sqrt{x}-1\right).\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)^2.\left(x-1\right)}.\frac{\sqrt{x}+1}{\sqrt{x}}\)
C=\(\frac{x\sqrt{x}-\sqrt{x}+2x-2-\left(x-1\right)}{\left(\sqrt{x}+1\right)^2.\left(x-1\right)}.\frac{\sqrt{x}+1}{\sqrt{x}}\)
C=\(\frac{x-1+x\sqrt{x}-\sqrt{x}}{\left(\sqrt{x}+1\right)^2.\left(x-1\right)}.\frac{\sqrt{x}+1}{\sqrt{x}}\)
C=\(\frac{\left(x-1\right).\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)^2.\left(x-1\right)}.\frac{\sqrt{x}+1}{\sqrt{x}}\)
C=\(\frac{1}{\sqrt{x}}=\frac{\sqrt{x}}{x}\)