Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}\left(\sqrt{x}+1\right)}=\frac{\sqrt{x}+1}{\sqrt{x}}\)
2\(\sqrt{\dfrac{16}{3}}\) - 3\(\sqrt{\dfrac{1}{27}}\) - \(\dfrac{3}{2\sqrt{3}}\)
= \(\dfrac{8}{\sqrt{3}}\) - \(\dfrac{3}{3\sqrt{3}}\) - \(\dfrac{3}{2\sqrt{3}}\)
= \(\dfrac{8}{\sqrt{3}}\) - \(\dfrac{1}{\sqrt{3}}\) - \(\dfrac{3}{2\sqrt{3}}\)
= \(\dfrac{16}{2\sqrt{3}}\) - \(\dfrac{2}{2\sqrt{3}}\) - \(\dfrac{3}{2\sqrt{3}}\)
= \(\dfrac{11}{2\sqrt{3}}\)
= \(\dfrac{11\sqrt{3}}{6}\)
f, 2\(\sqrt{\dfrac{1}{2}}\)- \(\dfrac{2}{\sqrt{2}}\) + \(\dfrac{5}{2\sqrt{2}}\)
= \(\dfrac{2}{\sqrt{2}}\) - \(\dfrac{2}{\sqrt{2}}\) + \(\dfrac{5}{2\sqrt{2}}\)
= \(\dfrac{5}{2\sqrt{2}}\)
= \(\dfrac{5\sqrt{2}}{4}\)
(1 + \(\dfrac{3-\sqrt{3}}{\sqrt{3}-1}\)).(1- \(\dfrac{3+\sqrt{3}}{\sqrt{3}+1}\))
= \(\dfrac{\sqrt{3}-1+3-\sqrt{3}}{\sqrt{3}-1}\).\(\dfrac{\sqrt{3}+1-3+\sqrt{3}}{\sqrt{3}+1}\)
= \(\dfrac{2}{\sqrt{3}-1}\).\(\dfrac{-2}{\sqrt{3}+1}\)
= \(\dfrac{-4}{3-1}\)
= \(\dfrac{-4}{2}\)
= -2
Ta có: \(P=\dfrac{\sqrt{x}+1}{x-1}-\dfrac{x+2}{x\sqrt{x}-1}-\dfrac{\sqrt{x}+1}{x+\sqrt{x}+1}\)
\(=\dfrac{x+\sqrt{x}+1-x-2-\left(x-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(=\dfrac{\sqrt{x}-1-x+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(=\dfrac{-\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(=\dfrac{-\sqrt{x}}{x+\sqrt{x}+1}\)
\(\dfrac{6}{\sqrt{2}-\sqrt{3}+3}=\dfrac{6\left(\sqrt{2}-\sqrt{3}-3\right)}{8-2\sqrt{6}}=\dfrac{3\left(\sqrt{2}-\sqrt{3}-3\right)\left(4+\sqrt{3}\right)}{13}\)
\(\dfrac{\sqrt{15}-\sqrt{12}}{\sqrt{5}-2}+\dfrac{6+2\sqrt{6}}{\sqrt{3}+\sqrt{2}}\\ =\dfrac{\sqrt{3}\left(\sqrt{5}-\sqrt{4}\right)}{\sqrt{5}-\sqrt{4}}+\dfrac{\sqrt{2}.\sqrt{6}\left(\sqrt{3}+\sqrt{2}\right)}{\sqrt{3}+\sqrt{2}}\\ =\sqrt{3}+\sqrt{12}\\ =\sqrt{3}+\sqrt{2^2.3}\\ =\sqrt{3}+2\sqrt{3}\\ =3\sqrt{3}\)
\(\dfrac{\sqrt{15}-\sqrt{12}}{\sqrt{5}-2}+\dfrac{6+2\sqrt{6}}{\sqrt{3}+\sqrt{2}}\)
\(=\dfrac{\sqrt{3}\left(\sqrt{5}-\sqrt{4}\right)}{\sqrt{5}-2}+\dfrac{\sqrt{12}\left(\sqrt{3}+\sqrt{2}\right)}{\sqrt{3}+\sqrt{2}}\\ =\sqrt{3}+\sqrt{12}\\ =\sqrt{3}+2\sqrt{3}=3\sqrt{3}\)
\(=\left(\sqrt{5}-\sqrt{3}\right).\sqrt{2}.\sqrt{8-\sqrt{15}}\)
\(=\left(\sqrt{5}-\sqrt{3}\right).\sqrt{16-2\sqrt{15}}\)
\(=\left(\sqrt{5}-\sqrt{3}\right)\sqrt{15-2\sqrt{15}+1}\)
\(=\left(\sqrt{5}-\sqrt{3}\right)\sqrt{\left(\sqrt{15}-1\right)^2}\)
\(=\left(\sqrt{5}-\sqrt{3}\right)\left|\sqrt{15}-1\right|\)\(=\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{15}-1\right)=5\sqrt{3}-\sqrt{5}-3\sqrt{5}+\sqrt{3}\)
\(=6\sqrt{3}-4\sqrt{5}\)
Vậy...
\(\left(\sqrt{10}-\sqrt{6}\right)\sqrt{8-\sqrt[]{15}}\)
\(=\sqrt{2}\left(\sqrt{5}-\sqrt{3}\right)\sqrt{8-\sqrt{15}}\)
\(=\sqrt{16-2\sqrt{15}}.\left(\sqrt{5}-\sqrt{3}\right)=\sqrt{\left(\sqrt{15}-1\right)^2}\left(\sqrt{5}-\sqrt{3}\right)\)
\(=\left(\sqrt{15}-1\right)\left(\sqrt{5}-\sqrt{3}\right)=5\sqrt{3}-3\sqrt{5}-\sqrt{5}+\sqrt{3}=6\sqrt{3}-4\sqrt{5}\)