Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=\frac{9^4.27^5.3^6.3^4}{3^8.81^4.243.8^2}\)
\(M=\frac{\left(3^2\right)^4.\left(3^3\right)^5.3^6.3^4}{3^8.\left(3^4\right)^4.\left(3^5\right).\left(2^3\right)}\)
\(M=\frac{3^8.3^{15}.3^6.3^4}{3^8.3^{16}.3^5.8}\)
\(M=\frac{3^{33}}{3^{29}.8}\)
\(M=\frac{3^4}{1.8}\)
\(M=\frac{81}{8}\)
Chúc bạn học tốt !!!
\(\frac{15.3^{11}+4.27^4}{9^7}\)
\(=\frac{5.3.3^{11}+4.\left(3^3\right)^4}{\left(3^2\right)^7}\)
\(=\frac{5.3^{12}+4.3^{12}}{3^{14}}\)
\(=\frac{3^{12}.\left(5+4\right)}{3^{14}}\)
\(=\frac{3^{12}.9}{3^{14}}\)
\(=\frac{3^{12}.3^2}{3^{14}}\)
\(=\frac{3^{14}}{3^{14}}\)
\(=1\)
Chúc bạn học tốt !!!
\(A=\frac{15.3^{11}+4.27^4}{9^7}\)
\(\Rightarrow\frac{3.5.3^{11}+4.3^{3.4}}{3^{2.7}}\)
\(\Rightarrow\frac{3^{12}.5+3^{12}.4}{3^{14}}\)
\(\Rightarrow\frac{3^{12}\left(5+4\right)}{3^{14}}\)
\(\Rightarrow\frac{9}{3^2}=\frac{9}{9}=1\)
Vậy ....
Lời giải:
\(M=\frac{9^4.27^5.3^6.3^4}{3^8.81^4.234.8^2}=\frac{(3^2)^4.(3^3)^5.3^6.3^4}{3^8.(3^4)^4.2.3^2.13.(2^3)^2}\)
\(=\frac{3^8.3^{15}.3^6.3^4}{3^8.3^{16}.2.3^2.13.2^6}=\frac{3^{33}}{3^{26}.2^7.13}=\frac{3^7}{2^7.13}\)
\(A=\frac{15.3^{11}+4.27^4}{9^7}=\frac{3.5.3^{11}+4.3^{3.4}}{3^{2.7}}=\frac{3^{12}.5+3^{12}.4}{3^{14}}=\frac{3^{12}\left(5+4\right)}{3^{14}}=\frac{9}{3^2}=\frac{9}{9}=1\)
\(F=\frac{15.3^{11}+4.27^4}{9^7}=\frac{5.3.3^{11}+4.\left(3^3\right)^4}{\left(3^2\right)^7}=\frac{5.3^{12}+4.3^{12}}{3^{14}}=\frac{3^{12}.\left(5+4\right)}{3^{14}}=\frac{3^{12}.9}{3^{12}.9}=1\)
\(G=\frac{5.2^{13}.4^{11}-16^9}{\left(3.2^{17}\right)^2}\)
\(G=\frac{5.2^{13}.\left(2^2\right)^{11}-\left(2^4\right)^9}{3^2.2^{34}}\)
\(G=\frac{5.2^{13}.2^{22}-2^{36}}{3^2.2^{34}}\)
\(G=\frac{5.2^{35}-2^{36}}{3^2.2^{34}}\)
\(G=\frac{2^{35}.\left(5-2\right)}{3^2.2^{34}}\)
\(G=\frac{2^{35}.3}{3^2.2^{34}}=\frac{2}{3}\)
\(\frac{16.3^{11+4.27^4}}{9^7}=\frac{2^4.3^{11+2^2.3^{12}}}{3^{14}}\)
\(=\frac{2^4.3^{11+2^2.531441}}{3^{14}}=\frac{2^4.3^{2125764}}{3^{14}}=2^4.3^{2125750}\)
Ta có:
\(\frac{16.3^{11+4.27^4}}{9^7}=\frac{2^4.3^{11+2^2.\left(3^3\right)^4}}{\left(3^2\right)^7}=\frac{2^4.3^{11+2^2.3^{12}}}{3^{14}}=\frac{2^4.3^{11}.3^{2^2.3^{12}}}{3^{14}}=\frac{2^4.3^{15}.3^{3^{12}}}{3^{14}}=2^4.3^{3^{12}}\)
Vậy ...