K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 7 2017

+) \(E=\left(4-x\right)\left(x+4\right)-\left(x+2\right)^2=16-x^2-x^2-4x-4\)

\(=-2x^2-4x+12\)

+)\(P=\left(2x+3\right)^2-\left(2x+1\right)\left(2x-1\right)=4x^2+12x+9-4x^2+1\)

\(=12x+10\)

+)\(Q=\left(4-3x\right)^2-\left(9x-1\right)\left(9x+1\right)=16-24x+9x^2-81x^2+1\)

\(=-72x^2-24x+17\)

+) \(M=\left(5+x\right)\left(x-5\right)-\left(x-3\right)^2=x^2-25-x^2+6x-9\)

\(=6x-34\)

+) \(N=2\left(3x+1\right)\left(x-2\right)-6\left(x+2\right)^2=\left(6x+2\right)\left(x-2\right)-6\left(x^2+4x+4\right)\)

\(=6x^2-12x+2x-4-6x^2-24x-24=-34x-28\)

12 tháng 7 2017

\(E=\left(4-x\right)\left(x+4\right)-\left(x+2\right)^2\)

\(E=4x+16-x^2-4x-x^2-4x-4\)

\(E=-2x^2-4x+12\)

\(P=\left(2x+3\right)^2-\left(2x+1\right)\left(2x-1\right)\)

\(P=4x^2+12x+9-4x^2-1\)

\(P=12x+10\)

\(Q=\left(4-3x\right)^2-\left(9x-1\right)\left(9x+1\right)\)

\(Q=16-24x+9x^2-81x^2+1\)

\(Q=17-24x-74x^2\)

\(M=\left(5+x\right)\left(x-5\right)-\left(x-3\right)^2\)

\(M=5x-25+x^2-5x-x^2+6x-9\)

\(M=-34+6x\)

\(N=2\left(3x+1\right)\left(x-2\right)-6\left(x+2\right)^2\)

\(N=\left(6x+2\right)\left(x-2\right)-\left(6x+12\right)^2\)

\(N=6x^2-12x+2x-4-36x^2-144x-144\)

\(N=-30x^2-154x-148\)

12 tháng 7 2017

A = \(\left(x-3\right)^2-\left(2x-1\right)\left(2x+1\right)\)

A = \(x^2-6x+9-4x^2+1=-3x^2-6x+10\)

B = \(\left(2x-3\right)^2-\left(x-1\right)\left(2x+1\right)\)

B = \(4x^2-12x+9-2x^2-x+2x+1\)

B = \(2x^2-11x+10\)

C = \(4x\left(x-3\right)^2-\left(4-2x\right)^2\)

C = \(4x\left(x^2-6x+9\right)-16+16x-4x^2\)

C = \(4x^3-24x^2+36x-16+16x-4x^2\)

C = \(4x^3-28x^2+52x-16\)

D = \(3x\left(x-1\right)\left(x-2\right)-x\left(2x-1\right)^2\)

D = \(\left(3x^2-3x\right)\left(x-2\right)-x\left(2x-1\right)^2\)

D = \(3x^3-6x^2-3x^2+6x-x\left(4x^2-4x+1\right)\)

D = \(3x^3-9x^2+6x-4x^3+4x^2-x\)

D = \(-x^3-5x^2+5x\)

12 tháng 7 2017

Đáp án câu C cho sẵn là:C=4x-16 bn ạ

24 tháng 8 2019

\(a,-5x\left(x-3\right)\left(2x+4\right)-\left(x+3\right)\left(x-3\right)+\left(5x-2\right)\left(3x+4\right)\)

\(=-5x\left(2x^2-x-12\right)-\left(x^2-9\right)+15x^2+20x-6x-8\)

\(=-10x^3+5x^2+60x-x^2+9+15x^2+20x-6x-8\)

\(=-10x^3+19x^2+74x+1\)

\(b,\left(4x-1\right)x\left(3x+1\right)-5x^2.x\left(x-3\right)-\left(x-4\right)x\left(x-5\right)\)\(-7\left(x^3-2x^2+x-1\right)\)

\(=\left(4x^2-x\right)\left(3x+1\right)-5x^4-15x^3-\left(x^2-4x\right)\left(x-5\right)\)\(-7x^3+14x^2-7x+7\)

\(=12x^3+x^2-x-5x^4-15x^3-x^3+9x^2+20x\)\(-7x^3+14x^2-7x+7\)

\(=-5x^4-11x^3+24x^2+12x+7\)

\(c,\left(5x-7\right)\left(x-9\right)-\left(3-x\right)\left(2-5x\right)-2x\left(x-4\right)\)

\(=5x^2-52x+63-6+17x-5x^2-2x^2+8x\)

\(=-2x^2-27x+57\)

24 tháng 8 2019

\(d,\left(5x-4\right)\left(x+5\right)-\left(x+1\right)\left(x^2-6\right)-5x+19\)

\(=5x^2+21x-20-x^3-x^2+6x+6-5x+19\)

\(=-x^3+4x^2+22x+5\)

\(e,\left(9x^2-5\right)\left(x-3\right)-3x^2\left(3x+9\right)-\left(x-5\right)\left(x+4\right)-9x^3\)

\(=9x^3-27x^2-5x+15-9x^3-27x^2-x^2+x+20-9x^3\)

\(=-9x^3-55x^2+4x+35\)

\(g,\left(x-1\right)^2-\left(x+2\right)^2\)

\(=x^2-2x+1-x^2-4x-4\)

\(=-6x-3\)

20 tháng 3 2020

Bài 1.

\( a)\dfrac{{4x - 8}}{{2{x^2} + 1}} = 0 (x \in \mathbb{R})\\ \Leftrightarrow 4x - 8 = 0\\ \Leftrightarrow 4x = 8\\ \Leftrightarrow x = 2\left( {tm} \right)\\ b)\dfrac{{{x^2} - x - 6}}{{x - 3}} = 0\left( {x \ne 3} \right)\\ \Leftrightarrow \dfrac{{{x^2} + 2x - 3x - 6}}{{x - 3}} = 0\\ \Leftrightarrow \dfrac{{x\left( {x + 2} \right) - 3\left( {x + 2} \right)}}{{x - 3}} = 0\\ \Leftrightarrow \dfrac{{\left( {x + 2} \right)\left( {x - 3} \right)}}{{x - 3}} = 0\\ \Leftrightarrow x - 2 = 0\\ \Leftrightarrow x = 2\left( {tm} \right) \)

20 tháng 3 2020

Bài 2.

\(c)\dfrac{{x + 5}}{{3x - 6}} - \dfrac{1}{2} = \dfrac{{2x - 3}}{{2x - 4}}\)

ĐK: \(x\ne2\)

\( Pt \Leftrightarrow \dfrac{{x + 5}}{{3x - 6}} - \dfrac{{2x - 3}}{{2x - 4}} = \dfrac{1}{2}\\ \Leftrightarrow \dfrac{{x + 5}}{{3\left( {x - 2} \right)}} - \dfrac{{2x - 3}}{{2\left( {x - 2} \right)}} = \dfrac{1}{2}\\ \Leftrightarrow \dfrac{{2\left( {x + 5} \right) - 3\left( {2x - 3} \right)}}{{6\left( {x - 2} \right)}} = \dfrac{1}{2}\\ \Leftrightarrow \dfrac{{ - 4x + 19}}{{6\left( {x - 2} \right)}} = \dfrac{1}{2}\\ \Leftrightarrow 2\left( { - 4x + 19} \right) = 6\left( {x - 2} \right)\\ \Leftrightarrow - 8x + 38 = 6x - 12\\ \Leftrightarrow - 14x = - 50\\ \Leftrightarrow x = \dfrac{{27}}{5}\left( {tm} \right)\\ d)\dfrac{{12}}{{1 - 9{x^2}}} = \dfrac{{1 - 3x}}{{1 + 3x}} - \dfrac{{1 + 3x}}{{1 - 3x}} \)

ĐK: \(x \ne -\dfrac{1}{3};x \ne \dfrac{1}{3}\)

\( Pt \Leftrightarrow \dfrac{{12}}{{1 - 9{x^2}}} - \dfrac{{1 - 3x}}{{1 + 3x}} - \dfrac{{1 + 3x}}{{1 - 3x}} = 0\\ \Leftrightarrow \dfrac{{12}}{{\left( {1 - 3x} \right)\left( {1 + 3x} \right)}} - \dfrac{{1 - 3x}}{{1 + 3x}} - \dfrac{{1 + 3x}}{{1 - 3x}} = 0\\ \Leftrightarrow \dfrac{{12 - {{\left( {1 - 3x} \right)}^2} - {{\left( {1 + 3x} \right)}^2}}}{{\left( {1 - 3x} \right)\left( {1 + 3x} \right)}} = 0\\ \Leftrightarrow \dfrac{{12 + 12x}}{{\left( {1 - 3x} \right)\left( {1 + 3x} \right)}} = 0\\ \Leftrightarrow 12 + 12x = 0\\ \Leftrightarrow 12x = - 12\\ \Leftrightarrow x = - 1\left( {tm} \right) \)

a) Ta có: \(\left(x+5\right)\left(2x-1\right)=\left(2x-3\right)\left(x+1\right)\)

\(\Leftrightarrow\left(x+5\right)\left(2x-1\right)-\left(2x-3\right)\left(x+1\right)=0\)

\(\Leftrightarrow2x^2-x+10x-5-\left(2x^2+2x-3x-3\right)=0\)

\(\Leftrightarrow2x^2+9x-5-2x^2+x+3=0\)

\(\Leftrightarrow10x-2=0\)

hay 10x=2

\(\Leftrightarrow x=\frac{1}{5}\)

Vậy: \(x=\frac{1}{5}\)

b) Ta có: \(\left(x+1\right)\left(x+9\right)=\left(x+3\right)\left(x+5\right)\)

\(\Leftrightarrow x^2+9x+x+9=x^2+5x+3x+15\)

\(\Leftrightarrow x^2+10x+9-x^2-8x-15=0\)

\(\Leftrightarrow2x-6=0\)

hay 2x=6

\(\Leftrightarrow x=3\)

Vậy: x=3

c) Ta có: \(\left(3x+5\right)\left(2x+1\right)=\left(6x-2\right)\left(x-3\right)\)

\(\Leftrightarrow6x^2+3x+10x+5=6x^2-18x-2x+6\)

\(\Leftrightarrow6x^2+13x+5=6x^2-20x+6\)

\(\Leftrightarrow6x^2+13x+5-6x^2+20x-6=0\)

\(\Leftrightarrow33x-1=0\)

\(\Leftrightarrow33x=1\)

hay \(x=\frac{1}{33}\)

Vậy: \(x=\frac{1}{33}\)

d) Ta có: \(\left(x-2\right)\left(3x+5\right)=\left(2x-4\right)\left(x+1\right)\)

\(\Leftrightarrow3x^2+5x-6x-10=2x^2+2x-4x-4\)

\(\Leftrightarrow3x^2-x-10=2x^2-2x-4\)

\(\Leftrightarrow3x^2-x-10-2x^2+2x+4=0\)

\(\Leftrightarrow x^2+x-6=0\)

\(\Leftrightarrow x^2+3x-2x-6=0\)

\(\Leftrightarrow x\left(x+3\right)-2\left(x+3\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=2\end{matrix}\right.\)

Vậy: \(x\in\left\{-3;2\right\}\)

đ) Ta có: \(9x^2-1=\left(3x+1\right)\left(2x-3\right)\)

\(\Leftrightarrow\left(3x-1\right)\left(3x+1\right)-\left(3x+1\right)\left(2x-3\right)=0\)

\(\Leftrightarrow\left(3x+1\right)\left[\left(3x-1\right)-\left(2x-3\right)\right]=0\)

\(\Leftrightarrow\left(3x+1\right)\left(3x-1-2x+3\right)=0\)

\(\Leftrightarrow\left(3x+1\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3x+1=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=-1\\x=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\frac{1}{3}\\x=-2\end{matrix}\right.\)

Vậy: \(x\in\left\{-\frac{1}{3};-2\right\}\)

e) Ta có: \(\left(2x+5\right)\left(x-4\right)=\left(x-5\right)\left(4-x\right)\)

\(\Leftrightarrow\left(2x+5\right)\left(x-4\right)+\left(x-5\right)\left(x-4\right)=0\)

\(\Leftrightarrow\left(x-4\right)\left(2x+5+x-5\right)=0\)

\(\Leftrightarrow\left(x-4\right)\cdot3x=0\)

\(3\ne0\)

nên \(\left[{}\begin{matrix}x-4=0\\x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=0\end{matrix}\right.\)

Vậy: \(x\in\left\{0;4\right\}\)

AH
Akai Haruma
Giáo viên
24 tháng 2 2020

a) $(x+5)(2x-1)=(2x-3)(x+1)$

$\Leftrightarrow 2x^2+9x-5=2x^2-x-3$

$\Leftrightarrow 10x=2\Rightarrow x=\frac{1}{5}$

b)

$(x+1)(x+9)=(x+3)(x+5)$

$\Leftrightarrow x^2+10x+9=x^2+8x+15$

$\Leftrightarrow 2x=6\Rightarrow x=3$

c)

$(3x+5)(2x+1)=(6x-2)(x-3)$

$\Leftrightarrow 6x^2+13x+5=6x^2-20x+6$

$\Leftrightarrow 33x=1\Rightarrow x=\frac{1}{33}$

4 tháng 11 2020

tck đầu tiên chọn câu trả lời của mình đi

2 tháng 7 2018

(x+2)(x+3)-(x-2)(x+5)=0

=> x2+5x+6-x2-3x+10=0

=>2x+16=0 

 =>2x=-16

=>x=-8

20 tháng 3 2020

\(a.\frac{4x-8}{2x^2+1}=0\\ \Leftrightarrow4x-8=0\\ \Leftrightarrow4\left(x-2\right)=0\\ \Leftrightarrow x-2=0\\ \Leftrightarrow x=2\)

Vậy nghiệm của phương trình trên là \(2\)

20 tháng 3 2020

\(b.\frac{x^2-x-6}{x-3}=0\left(x\ne3\right)\\\Leftrightarrow x^2-x-6=0\\ \Leftrightarrow x^2+2x-3x-6=0\\\Leftrightarrow x\left(x+2\right)-3\left(x+2\right)=0\\\Leftrightarrow \left(x-3\right)\left(x+2\right)=0\\\Leftrightarrow \left[{}\begin{matrix}x-3=0\\x+2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\left(ktm\right)\\x=-2\left(tm\right)\end{matrix}\right.\)

Vậy nghiệm của phương trình trên là \(-2\)

8 tháng 12 2019

bn nên vt thành phân thức thì mọi người sẽ dễ nhìn và sẽ giải giúp bn!!!