Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\dfrac{3-\sqrt{x}}{\sqrt{x}-2}+\dfrac{\sqrt{x}-2}{\sqrt{x}}-\dfrac{\sqrt{x}+1}{\sqrt{x}-2}+\dfrac{2\sqrt{x}+7}{4-x}\left(x>0;x\ne4\right)\\ P=\dfrac{\left(3-\sqrt{x}\right)\left(\sqrt{x}+2\right)-\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)+2\sqrt{x}+7}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\dfrac{\sqrt{x}-2}{\sqrt{x}}\\ P=\dfrac{\sqrt{x}+6-x-x-3\sqrt{x}-2+2\sqrt{x}+7}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}+\dfrac{\sqrt{x}+2}{\sqrt{x}}\\ P=\dfrac{-2x+11}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\dfrac{\sqrt{x}+2}{\sqrt{x}}\\ P=\dfrac{-2x\sqrt{x}+11\sqrt{x}+\left(\sqrt{x}+2\right)\left(x-4\right)}{\sqrt{x}\left(x-4\right)}\)
\(P=\dfrac{-2x\sqrt{x}+11\sqrt{x}+x\sqrt{x}-4\sqrt{x}+2x-8}{\sqrt{x}\left(x-4\right)}\\ P=\dfrac{-x\sqrt{x}+8\sqrt{x}+2x-8}{\sqrt{x}\left(x-4\right)}\)
a: \(P=\dfrac{2x+4\sqrt{x}-x-6\sqrt{x}}{x-4}=\dfrac{x-2\sqrt{x}}{x-4}=\dfrac{\sqrt{x}}{\sqrt{x}+2}\)
b: Thay x=1 vào P, ta được:
\(P=\dfrac{1}{1+2}=\dfrac{1}{3}\)
Bạn xem nhé! Đây là phần mình sưu tầm được khá chi tiết rồi
a) Ta có:
\(VT=x - 4\sqrt {x - 4} \)
\(= \left( {x - 4} \right) - 2.2\sqrt {x - 4} + 4\)
\( = {\left( {\sqrt {x - 4} } \right)^2} - 2.2\sqrt {x - 4} + {2^2} \)
\(= {\left( {\sqrt {x - 4} - 2} \right)^2}=VP\)
Vế trái bằng vế phải nên đẳng thức được chứng minh.
b) A xác định khi: \(x - 4 \ge 0\) và \(x - 4\sqrt {x - 4} \ge 0\)
\(x - 4 \ge 0 \Leftrightarrow x \ge 4\)
\(\eqalign{
& x - 4\sqrt {x - 4} = \left( {x - 4} \right) - 2.2\sqrt {x - 4} + 4 \cr
& = {\left( {\sqrt {x - 4} - 2} \right)^2} \ge 0\text{( luôn đúng )} \cr} \)
Ta có:
\(A = \sqrt {x + 4\sqrt {x - 4} } + \sqrt {x - 4\sqrt {x - 4} } \)
\( = \sqrt {{{\left( {\sqrt {x - 4} + 2} \right)}^2}} + \sqrt {{{\left( {\sqrt {x - 4} - 2} \right)}^2}} \)
\( = \left| {\sqrt {x - 4} + 2} \right| + \left| {\sqrt {x - 4} - 2} \right|\)
\( = \sqrt {x - 4} + 2 + \left| {\sqrt {x - 4} - 2} \right|\)
- Nếu
\(\eqalign{
& \sqrt {x - 4} - 2 \ge 0 \Leftrightarrow \sqrt {x - 4} \ge 2 \cr
& \Leftrightarrow x - 4 \ge 4 \Leftrightarrow x \ge 8 \cr} \)
thì: \(\left| {\sqrt {x - 4} - 2} \right| = \sqrt {x - 4} - 2\)
Ta có: \(A = \sqrt {x - 4} + 2 + \sqrt {x - 4} - 2 = 2\sqrt {x - 4} \)
- Nếu:
\(\eqalign{
& \sqrt {x - 4} - 2 < 0 \Leftrightarrow \sqrt {x - 4} < 2 \cr
& \Leftrightarrow x - 4 < 4 \Leftrightarrow x < 8 \cr} \)
thì \(\left| {\sqrt {x - 4} - 2} \right| = 2 - \sqrt {x - 4} \)
Ta có: \(A = \sqrt {x - 4} + 2 + 2 - \sqrt {x - 4} = 4\)
CÁC TÁC PHẨM KHÁC
- Ôn tập chương II - Đường tròn
- Bài 8. Vị trí tương đối của hai đường tròn (tiếp theo)
- Bài 7. Vị trí tương đối của hai đường tròn
- Bài 6. Tính chất của hai tiếp tuyến cắt nhau
- Bài 5. Dấu hiệu nhận biết tiếp tuyến của đường tròn
- Bài 4. Vị trí tương đối của đường thẳng và đường tròn
- Bài 3. Liên hệ giữa dây và khoảng cách từ tâm đến dây
- Bài 2. Đường kính và dây của đường tròn
- Bài 1: Sự xác định đường tròn. Tính chất đối xứng của đường tròn
- Bài tập ôn chương IV - Hàm số bậc hai. Phương trình bậc hai một ẩn.
BÀI VIẾT MỚI NHẤT
- Bài 8.23* trang 87 Sách bài tập Vật lí 10 Nâng cao
- Bài 8.22 trang 86 Sách bài tập Vật lí 10 Nâng cao
- Bài 8.21 trang 86 Sách bài tập Vật lí 10 Nâng cao
- Bài 8.20 trang 86 Sách bài tập Vật lí 10 Nâng cao
- Bài 8.17 trang 86 Sách bài tập Vật lí 10 Nâng cao
- Bài 8.15* trang 85 Sách bài tập Vật lí 10 Nâng cao
- Bài 8.14 trang 85 Sách bài tập Vật lí 10 Nâng cao
- Bài 8.24* trang 87 Sách bài tập Vật lí 10 Nâng cao
- Bài 8.12 trang 85 Sách bài tập Vật lí 10 Nâng cao
- Bài 8.11* trang 85 Sách bài tập Vật lí 10 Nâng cao
Đk: \(x\ge4\)
\(A=\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}\)
\(=\sqrt{\left(x-4\right)+4\sqrt{x-4}+4}+\sqrt{\left(x-4\right)-4\sqrt{x-4}+4}\)
\(=\sqrt{\left(\sqrt{x-4}+2\right)^2}+\sqrt{\left(\sqrt{x-4}-2\right)^2}\)
\(=\sqrt{x-4}+2+\left|\sqrt{x-4}-2\right|\)
TH1:\(\sqrt{x-4}>2\Leftrightarrow x>8\)
\(A=\sqrt{x-4}+2+\sqrt{x-4}-2=2\sqrt{x-4}\)
TH2:\(\sqrt{x-4}\le2\Leftrightarrow4\le x\le8\)
\(A=\sqrt{x-4}+2-\left(\sqrt{x-4}-2\right)=4\)
Vậy...
\(P=\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)=x-y\)
\(a,\)
\(=\left(\dfrac{\sqrt{x}-1}{3\sqrt{x}-1}-\dfrac{1}{3\sqrt{x}+1}+\dfrac{8\sqrt{x}}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}\right):\left(\dfrac{3\sqrt{x}+1-3\sqrt{x}+2}{3\sqrt{x}+1}\right)\)
\(=\left(\dfrac{\left(\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)-3\sqrt{x}+1+8\sqrt{x}}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}\right):\left(\dfrac{3}{3\sqrt{x}+1}\right)\)
\(=\dfrac{3x+\sqrt{x}-3\sqrt{x}-1-3\sqrt{x}+1+8\sqrt{x}}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}.\dfrac{3\sqrt{x}+1}{3}\)
\(=\dfrac{3\sqrt{x}+3x}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}.\dfrac{3\sqrt{x}+1}{3}\)
\(=\dfrac{3\sqrt{x}\left(\sqrt{x}+1\right)}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}.\dfrac{3\sqrt{x}+1}{3}\)
\(=\dfrac{3\sqrt{x}+1}{3\sqrt{x}-1}\)
Vậy \(P=\dfrac{3\sqrt{x}+1}{3\sqrt{x}-1}\)
\(b,\)Thay \(P=\dfrac{6}{5}\) vào pt, ta có :
\(\dfrac{3\sqrt{x}+1}{3\sqrt{x}-1}=\dfrac{6}{5}\)
\(\Leftrightarrow5\left(3\sqrt{x}+1\right)=6\left(3\sqrt{x}-1\right)\)
\(\Leftrightarrow15\sqrt{x}+5-18\sqrt{x}+6=0\)
\(\Leftrightarrow-3\sqrt{x}+11=0\)
\(\Leftrightarrow-3\sqrt{x}=-11\)
\(\Leftrightarrow\sqrt{x}=\dfrac{11}{3}\)
\(\Leftrightarrow x=\left(\dfrac{11}{3}\right)^2\)
\(\Leftrightarrow x=\dfrac{121}{9}\)
Vậy \(x=\dfrac{121}{9}\) thì \(P=\dfrac{6}{5}\)
\(=\sqrt{x}+\sqrt{x}=2\sqrt{x}\)