K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 8 2021

\(B=\dfrac{\sqrt{8+2\sqrt{15}}}{\sqrt{12}+\sqrt{20}}=\dfrac{\sqrt{\left(\sqrt{3}+\sqrt{5}\right)^2}}{\sqrt{12}+\sqrt{20}}\\ B=\dfrac{\sqrt{3}+\sqrt{5}}{\sqrt{12}+\sqrt{20}}=\dfrac{\left(\sqrt{3}+\sqrt{5}\right)\left(\sqrt{20}-\sqrt{12}\right)}{8}\\ B=\dfrac{2\sqrt{15}-6+10-2\sqrt{15}}{8}=\dfrac{4}{8}=\dfrac{1}{2}\)

Tick nha 😘

\(B=\dfrac{\sqrt{8+2\sqrt{15}}}{\sqrt{12}+\sqrt{20}}=\dfrac{\sqrt{5}+\sqrt{3}}{2\left(\sqrt{5}+\sqrt{3}\right)}=\dfrac{1}{2}\)

AH
Akai Haruma
Giáo viên
9 tháng 9 2021

Lời giải:

$\sqrt{(3-\sqrt{3})^2}=|3-\sqrt{3}|=3-\sqrt{3}$ do $3-\sqrt{3}>0$

\(\sqrt{\left(3-\sqrt{3}\right)^2}=3-\sqrt{3}\)

9 tháng 9 2021

\(\sqrt{11+6\sqrt{2}}=\sqrt{\left(3+\sqrt{2}\right)^2}=3+\sqrt{2}\)

9 tháng 9 2021

Mik ko hiểu đề lắm

\(\sqrt{12-2\sqrt{32}}+\sqrt{9+4\sqrt{2}}\)

\(=\sqrt{8-2\cdot\sqrt{8}\cdot2+4}+2\sqrt{2}+1\)

=2căn 2-2+2căn 2+1

=4căn 2-1

28 tháng 10 2023

\(\sqrt{\dfrac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}}+\sqrt{\dfrac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}}\)

\(=\sqrt{\dfrac{\left(\sqrt{3}-\sqrt{2}\right)^2}{3-2}}+\sqrt{\dfrac{\left(\sqrt{3}+\sqrt{2}\right)^2}{3-2}}\)

\(=\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}\)

\(=\sqrt{3}-\sqrt{2}+\sqrt{3}+\sqrt{2}=2\sqrt{3}\)

28 tháng 10 2023

Cảm ơn nhiều ạ

 

14 tháng 9 2017

\(\frac{\sqrt{5}-\sqrt{3}}{\sqrt{2}}=\frac{\sqrt{2}\left(\sqrt{5}-\sqrt{3}\right)}{2}\)

26 tháng 12 2021

\(=\dfrac{\sqrt{5}+1-\sqrt{5}+1}{4}=\dfrac{1}{2}\)

29 tháng 10 2023

\(\dfrac{3}{\sqrt{3}+1}-\dfrac{3}{\sqrt{3}-1}\)

\(=\dfrac{3\left(\sqrt{3}-1\right)-3\left(\sqrt{3}+1\right)}{3-1}\)

\(=\dfrac{3\sqrt{3}-3-3\sqrt{3}-3}{2}=\dfrac{-6}{2}=-3\)

30 tháng 9 2020

Đặt \(N=\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}\)

\(\Rightarrow N\sqrt{2}=\sqrt{8+2\sqrt{7}}-\sqrt{8-2\sqrt{7}}\)

\(=\sqrt{\left(\sqrt{7}+1\right)^2}-\sqrt{\left(\sqrt{7}-1\right)^2}\)

\(=\sqrt{7}+1-\sqrt{7}+1=2\)

\(\Rightarrow N=\sqrt{2}\)

\(\Rightarrow M=N-\sqrt{8}=\sqrt{2}-\sqrt{8}\)