Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
rút gọn biểu thức:
E=cos(\(\dfrac{3\pi}{3}-\alpha\))-sin(\(\dfrac{3\pi}{2}-\alpha\))+sin(\(\alpha+4\pi\))
\(\frac{cos\left(a-b\right)}{sin\left(a+b\right)}=\frac{cosa.cosb+sina.sinb}{sina.cosb+cosa.sinb}=\frac{\frac{cosa.cosb}{sina.sinb}+1}{\frac{sina.cosb}{sina.sinb}+\frac{cosa.sinb}{sina.sinb}}=\frac{cota.cotb+1}{cota+cotb}\)
Bạn ghi đề ko đúng
\(sin\left(a+b\right)sin\left(a-b\right)=\frac{1}{2}\left[cos2b-cos2a\right]\)
\(=\frac{1}{2}\left[1-2sin^2b-1+2sin^2a\right]\)
\(=sin^2a-sin^2b\)
\(=1-cos^2a-1+cos^2b=cos^2b-cos^2a\)
Câu này bạn cũng ghi đề ko đúng
\(cos\left(a+b\right)cos\left(a-b\right)=\frac{1}{2}\left[cos2a+cos2b\right]\)
\(=\frac{1}{2}\left[2cos^2a-1+1-2sin^2b\right]=cos^2a-sin^2b\)
\(=1-sin^2a-1+cos^2b=cos^2b-sin^2a\)
Mẫn Li
Câu 4 nếu bạn ko đánh sai thì người ghi đề sai :D, tử số phải là sinb chứ ko phải sina (đã chứng minh bên trên)
Câu 2b sửa lại thì cm dễ thôi:
\(\frac{cos\left(a+b\right).cos\left(a-b\right)}{sin^2a.sin^2b}=\frac{\frac{1}{2}cos2a+\frac{1}{2}cos2b}{sin^2a.sin^2b}=\frac{1-sin^2a-sin^2b}{sin^2a.sin^2b}=\frac{1}{sin^2a.sin^2b}-\frac{1}{sin^2a}-\frac{1}{sin^2b}\)
\(=\left(1+cot^2a\right)\left(1+cot^2b\right)-\left(1+cot^2a\right)-\left(1+cot^2b\right)\)
\(=1+cot^2a+cot^2b+cot^2a.cot^2b-2-cot^2a-cot^2b\)
\(=cot^2a.cot^2b-1\)
(từ đầu bằng thứ nhất ra thứ 2 sử dụng ct nhân đôi \(cos2x=1-2sin^2x\))
Rất xin lỗi bạn!
Câu 2b do mình đánh sai dấu phải là \(\frac{cos\left(a+b\right)\times cos\left(a-b\right)}{sin^2a\times sin^2b}=cot^2a\times cot^2b-1\)
Câu 3 mình cũng đánh sai luôn:
\(sin\frac{A}{2}=cos\frac{B}{2}\times cos\frac{C}{2}-sin\frac{C}{2}\times sin\frac{B}{2}\)
Còn câu 4 thì mình ko có đánh sai! Thành thật xin lỗi bạn! Mình sẽ khắc phục sự cố này!
Câu a)
Từ \(\tan a=3\Leftrightarrow \frac{\sin a}{\cos a}=3\Rightarrow \sin a=3\cos a\)
Do đó:
\(\frac{\sin a\cos a+\cos ^2a}{2\sin ^2a-\cos ^2a}=\frac{3\cos a\cos a+\cos ^2a}{2(3\cos a)^2-\cos ^2a}\)
\(=\frac{\cos ^2a(3+1)}{\cos ^2a(18-1)}=\frac{4}{17}\)
Câu b)
Có: \(\cot \left(\frac{\pi}{2}-x\right)=\tan x=\frac{\sin x}{\cos x}\)
\(\cos\left(\frac{\pi}{2}+x\right)=-\sin x\)
\(\Rightarrow \cot \left(\frac{\pi}{2}-x\right)\cos \left(\frac{\pi}{2}+x\right)=\frac{-\sin ^2x}{\cos x}\)
Và:
\(\frac{\sin (\pi-x)\cot x}{1-\sin ^2x}=\frac{\sin x\cot x}{\cos^2x}=\frac{\sin x.\frac{\cos x}{\sin x}}{\cos^2x}=\frac{1}{\cos x}\)
Do đó:
\(\Rightarrow \cot \left(\frac{\pi}{2}-x\right)\cos \left(\frac{\pi}{2}+x\right)+\frac{\sin (\pi-x)\cot x}{1-\sin ^2x}=\frac{1-\sin ^2x}{\cos x}=\frac{\cos ^2x}{\cos x}=\cos x\)
Ta có đpcm.
\(A=sin\left(\dfrac{\pi}{2}-\alpha+2\pi\right)+cos\left(\pi+\alpha+12\pi\right)-3sin\left(\alpha-\pi-4\pi\right)\)
\(=sin\left(\dfrac{\pi}{2}-\alpha\right)+cos\left(\pi+\alpha\right)-3sin\left(\alpha-\pi\right)\)
\(=cos\alpha-cos\alpha+3sin\left(\pi-\alpha\right)\)\(=3sin\alpha\)
\(B=sin\left(x+\dfrac{\pi}{2}+42\pi\right)+cos\left(x+\pi+2016\pi\right)+sin^2\left(x+\pi+32\pi\right)+sin^2\left(x-\dfrac{\pi}{2}-2\pi\right)+cos\left(x-\dfrac{\pi}{2}+2\pi\right)\)
\(=sin\left(x+\dfrac{\pi}{2}\right)+cos\left(x+\pi\right)+sin^2\left(x+\pi\right)+sin^2\left(x-\dfrac{\pi}{2}\right)+cos\left(x-\dfrac{\pi}{2}\right)\)
\(=cosx-cosx+sin^2x+cos^2x+sinx\)
\(=1+sinx\)
\(C=sin\left(x+\dfrac{\pi}{2}+1008\pi\right)+2sin^2\left(\pi-x\right)+cos\left(x+\pi+2018\pi\right)+cos2x+sin\left(x+\dfrac{\pi}{2}+4\pi\right)\)
\(=sin\left(x+\dfrac{\pi}{2}\right)+2sin^2\left(\pi-x\right)+cos\left(x+\pi\right)+cos2x+sin\left(x+\dfrac{\pi}{2}\right)\)
\(=cosx+2sin^2x-cosx+1-2sin^2x+cosx\)
\(=1+cosx\)
1,\(A=3\left(sin^4x+cos^4x\right)-2\left(sin^2x+cos^2x\right)\left(sin^4x-sin^2x.cos^2x+cos^4x\right)\)
\(=3\left(sin^4x+cos^4x\right)-2\left(sin^4x-sin^2x.cos^4x+cos^4x\right)\)
\(=sin^4x+2sin^2x.cos^2x+cos^4x=\left(sin^2x+cos^2x\right)^2=1\)
Vậy...
2,\(B=cos^6x+2sin^4x\left(1-sin^2x\right)+3\left(1-cos^2x\right)cos^4x+sin^4x\)
\(=-2cos^6x+3sin^4x-2sin^6x+3cos^4x\)
\(=-2\left(sin^2x+cos^2x\right)\left(sin^4x-sin^2x.cos^2x+cos^4x\right)+3\left(cos^4x+sin^4x\right)\)
\(=-2\left(sin^4x-sin^2x.cos^2x+cos^4x\right)+3\left(cos^4x+sin^4x\right)\)\(=cos^4x+sin^4x+2sin^2x.cos^2x=1\)
Vậy...
3,\(C=\dfrac{1}{2}\left[cos\left(-\dfrac{7\pi}{12}\right)+cos\left(2x-\dfrac{\pi}{12}\right)\right]+\dfrac{1}{2}\left[cos\left(-\dfrac{7\pi}{12}\right)+cos\left(2x+\dfrac{11\pi}{12}\right)\right]\)
\(=cos\left(-\dfrac{7\pi}{12}\right)+\dfrac{1}{2}\left[cos\left(2x-\dfrac{\pi}{12}\right)+cos\left(2x+\dfrac{11\pi}{12}\right)\right]\)\(=\dfrac{-\sqrt{6}+\sqrt{2}}{4}+\dfrac{1}{2}\left[cos\left(2x-\dfrac{\pi}{12}\right)+cos\left(2x-\dfrac{\pi}{12}+\pi\right)\right]\)
\(=\dfrac{-\sqrt{6}+\sqrt{2}}{4}+\dfrac{1}{2}\left[cos\left(2x-\dfrac{\pi}{12}\right)-cos\left(2x-\dfrac{\pi}{12}\right)\right]\)\(=\dfrac{-\sqrt{6}+\sqrt{2}}{4}\)
Vậy...
4, \(D=cos^2x+\left(-\dfrac{1}{2}cosx-\dfrac{\sqrt{3}}{2}sinx\right)^2+\left(-\dfrac{1}{2}.cosx+\dfrac{\sqrt{3}}{2}.sinx\right)^2\)
\(=cos^2x+\dfrac{1}{4}cos^2x+\dfrac{\sqrt{3}}{4}cosx.sinx+\dfrac{3}{4}sin^2x+\dfrac{1}{4}cos^2x-\dfrac{\sqrt{3}}{4}cosx.sinx+\dfrac{3}{4}sin^2x\)
\(=\dfrac{3}{2}\left(cos^2x+sin^2x\right)=\dfrac{3}{2}\)
Vậy...
5, Xem lại đề
6,\(F=-cosx+cosx-tan\left(\dfrac{\pi}{2}+x\right).cot\left(\pi+\dfrac{\pi}{2}-x\right)\)
\(=tan\left(\pi-\dfrac{\pi}{2}-x\right).cot\left(\dfrac{\pi}{2}-x\right)\)\(=tan\left(\dfrac{\pi}{2}-x\right).cot\left(\dfrac{\pi}{2}-x\right)\)\(=cotx.tanx=1\)
Vậy...
\(A=\frac{1}{2}-\frac{1}{2}cos\left(2a-2b\right)+\frac{1}{2}-\frac{1}{2}cos2b+2sin\left(a-b\right)sinb.cosa\)
\(=1-\frac{1}{2}\left[cos\left(2a-2b\right)+cos2b\right]+2sin\left(a-b\right)sinb.cosa\)
\(=1-cosa.cos\left(a-2b\right)+2sin\left(a-b\right).sinb.cosa\)
\(=1-cosa\left[cos\left(a-2b\right)-2sin\left(a-b\right)sinb\right]\)
\(=1-cosa\left[cos\left(a-2b\right)+cosa-cos\left(a-2b\right)\right]\)
\(=1-cosa^2=sin^2a\)
Hoàn toàn tương tự:
\(B=1+cos\left(2a+b\right).cosb-2cosa.cosb.cos\left(a+b\right)\)
\(=1+cosb\left[cos\left(2a+b\right)-2cosa.cos\left(a+b\right)\right]\)
\(=1+cosb\left[cos\left(2a+b\right)-cos\left(2a+b\right)-cosb\right]\)
\(=1-cos^2b=sin^2b\)