Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\frac{a-4\sqrt{a}+4-1}{\sqrt{a}-3}=\frac{\left(\sqrt{a}-2\right)^2-1}{\sqrt{a}-3}.\)
\(=\frac{\left(\sqrt{a}-3\right)\left(\sqrt{a}-1\right)}{\sqrt{a}-3}\)
\(=\sqrt{a}-1\)
\(b,\frac{a+\sqrt{a^2-6a+9}}{2a-3}=\frac{a+\sqrt{\left(a-3\right)^2}}{2a-3}\)
\(=\frac{a+a-3}{2a-3}=\frac{2a-3}{2a-3}\)
\(=1\)
a) \(\sqrt{4+2\sqrt{3}}-\sqrt{4-2\sqrt{3}}\)
\(=\sqrt{3}+1-\left(\sqrt{3}-1\right)\)
\(=\sqrt{3}+1-\sqrt{3}+1\)
\(=2\)
b) \(\sqrt{9-4\sqrt{5}}-\sqrt{9+4\sqrt{5}}\)
\(=\sqrt{5}-2-\left(2+\sqrt{5}\right)\)
\(=\sqrt{5}-2-\sqrt{5}-2\)
\(=-4\)
a) \(\sqrt{4+2\sqrt{3}}-\sqrt{4-2\sqrt{3}}\)
\(=\sqrt{3+2\sqrt{3}+1}-\sqrt{3-2\sqrt{3}+1}\)
\(=\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{\left(\sqrt{3}-1\right)^2}\)
\(=\sqrt{3}+1-\sqrt{3}+1\)
\(=2\)
b) tương tự
\(\left(\sqrt{3}-\sqrt{2}\right)\sqrt{5+2\sqrt{6}}\)
\(=\sqrt{15+2.3.\sqrt{6}}\)\(-\sqrt{10+2.2\sqrt{6}}\)
\(=\sqrt{9+2.3\sqrt{6}+6}\)\(-\sqrt{6+2.\sqrt{6}.2+4}\)
\(=\sqrt{\left(3+\sqrt{6}\right)^2}\)\(-\sqrt{\left(\sqrt{6}+2\right)^2}\)
\(=3+\sqrt{6}\)\(-2\)\(-\sqrt{6}=\left(3-2\right)+\left(\sqrt{6}-\sqrt{6}\right)\)
\(=1+0=1\)
a) \((\sqrt{3}-\sqrt{2}).\sqrt{(\sqrt{3}+\sqrt{2})^2}\)
\(\left(\sqrt{3}-\sqrt{2}\right).\left(\sqrt{3}+\sqrt{2}\right)\)
\(\left(\sqrt{3}\right)^2-\left(\sqrt{2}\right)^2\)\(=3-2=1\)
b) \(\sqrt{24+8\sqrt{5}}+\sqrt{9-4\sqrt{5}}\)
=\(\sqrt{(2+2\sqrt{5})^2}+\sqrt{(\sqrt{5}-2)^2}\)
=\(2+2\sqrt{5}+\sqrt{5}-2\)\(=3\sqrt{5}\)
a) \(\sqrt{2+\sqrt{3}}.\sqrt{2-\sqrt{3}}=\sqrt{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}=\sqrt{4-3}=\sqrt{1}=1\)
b)
Đặt \(B=\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}\)
\(B^2=4+\sqrt{7}-2\sqrt{\left(4+\sqrt{7}\right)\left(4-\sqrt{7}\right)}+4-\sqrt{7}\)
\(=8-2\sqrt{16-7}=8-2\sqrt{9}=8-2.3=8-6=2\)
\(\Rightarrow B=\sqrt{2}\)
a, = \(\sqrt{a^2b^2.\left(1+\frac{1}{a^2b^2}\right)}\) = \(\sqrt{a^2b^2+1}\)
c, = \(\sqrt{\frac{a+ab}{b^4}}\) = \(\frac{\sqrt{a+ab}}{b^2}\)
k mk nha
a, \(ab\sqrt{1+\frac{1}{a^2b^2}}\)
\(ab\sqrt{1+\frac{1}{a^2b^2}}=ab\sqrt{\frac{1+a^2b^2}{a^2b^2}}=\frac{ab}{\left|ab\right|}\sqrt{1+a^2b^2}\)
\(=\hept{\begin{cases}\sqrt{1+a^2b^2}ĐK:ab>0\\-\sqrt{1+a^2b^2}ĐKab< 0\end{cases}}\)
b, \(\sqrt{\frac{a}{b^3}+\frac{a}{b^4}}\)
\(\sqrt{\frac{a}{b^3}+\frac{a}{b^4}}=\sqrt{\frac{a+ab}{b^4}}=\frac{1}{b^2}\sqrt{a+ab}\)
\(\sqrt{6-4\sqrt{2}}\)\(+\sqrt{22-12\sqrt{2}}\)
\(=\sqrt{4-4\sqrt{2}+2}\)\(+\sqrt{18-12\sqrt{2}+4}\)
\(=\sqrt{\left(2-\sqrt{2}\right)^2}\)\(+\sqrt{\left(2-3\sqrt{2}\right)^2}\)
\(=2-\sqrt{2}+3\sqrt{2}-2\)
\(=\left(2-2\right)+\left(-\sqrt{2}+3\sqrt{2}\right)\)
\(=0+2\sqrt{2}\)\(=2\sqrt{2}\)
\(\sqrt{17-12\sqrt{2}}\)\(+\sqrt{9+4\sqrt{2}}\)
\(=\sqrt{\left(3-2\sqrt{2}\right)^2}\)\(+\sqrt{\left(2\sqrt{2}+1\right)^2}\)
\(=\left|3-2\sqrt{2}\right|\)\(+\left|2\sqrt{2}+1\right|\)
\(=3-2\sqrt{2}\)\(+2\sqrt{2}+1\)
\(=\left(3+1\right)+\left(-2\sqrt{2}+2\sqrt{2}\right)\)
\(=4+0=4\)
a) \(\sqrt{9-2\sqrt{14}}\)
\(=\sqrt{7-2\cdot\sqrt{7}\cdot\sqrt{2}+2}\)
\(=\sqrt{\left(\sqrt{7}-\sqrt{2}\right)^2}\)
\(=\sqrt{7}-\sqrt{2}\)
b) chịu
√9a4 + 3a2 = √(3a2)2 + 3a2
= |3a2| + 3a2 = 3a2 + 3a2 = 6a2
(do a2 ≥ 0 với mọi a nên |3a2| = 3a2)