Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\sqrt{\dfrac{x}{y^3}+\dfrac{2x}{y^4}}=\sqrt{\dfrac{xy}{y^4}+\dfrac{2x}{y^4}}=\sqrt{\dfrac{xy+2x}{y^4}}=\dfrac{\sqrt{xy+2x}}{\sqrt{y^4}}=\dfrac{\sqrt{xy+2x}}{\left|y^2\right|}=\dfrac{\sqrt{xy+2x}}{y^2}\)(vì y2\(\ge0\))
b) \(\dfrac{x-\sqrt{xy}}{\sqrt{x}-\sqrt{y}}=\dfrac{\sqrt{x}.\sqrt{x}-\sqrt{x}.\sqrt{y}}{\sqrt{x}-\sqrt{y}}=\dfrac{\sqrt{x}\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{x}-\sqrt{y}}=\sqrt{x}\)
c) \(\left(a-b\right)\sqrt{\dfrac{a^2b^2}{\left(a-b\right)^2}}=\left(a-b\right)\dfrac{\sqrt{\left(ab\right)^2}}{\sqrt{\left(a-b\right)^2}}=\left(a-b\right)\dfrac{\left|ab\right|}{\left|a-b\right|}\)
Nếu a-b>0 thì \(\left(a-b\right)\dfrac{\left|ab\right|}{\left|a-b\right|}=\left(a-b\right)\dfrac{\left|ab\right|}{a-b}=\left|ab\right|\)
Nếu a-b<0 thì \(\left(a-b\right)\dfrac{\left|ab\right|}{\left|a-b\right|}=\left(a-b\right)\dfrac{\left|ab\right|}{-\left(a-b\right)}=-\left|ab\right|\)
d) \(\dfrac{a-3\sqrt{a}+3}{a\sqrt{a}+3\sqrt{3}}=\dfrac{a-3\sqrt{a}+3}{\left(\sqrt{a}\right)^3+\left(\sqrt{3}\right)^3}=\dfrac{a-3\sqrt{a}+3}{\left(\sqrt{a}+\sqrt{3}\right)\left(a-3\sqrt{a}+3\right)}=\dfrac{1}{\sqrt{a}+\sqrt{3}}\)
Nếu trục căn thức ở mẫu thì \(\dfrac{1}{\sqrt{a}+\sqrt{3}}=\dfrac{\sqrt{a}-\sqrt{3}}{\left(\sqrt{a}+\sqrt{3}\right)\left(\sqrt{a}-\sqrt{3}\right)}=\dfrac{\sqrt{a}-\sqrt{3}}{a-3}\)
a) ĐS: .
b) ĐS: Nếu thì
Nếu ab
c) ĐS:
d)
Nhận xét. Nhận thấy rằng để có nghĩa thì Do đó . Vì thế có thể phân tích tử thành nhân tử.
a) ĐS: .
b) ĐS: Nếu thì
Nếu ab
c) ĐS:
d)
Nhận xét. Nhận thấy rằng để có nghĩa thì Do đó . Vì thế có thể phân tích tử thành nhân tử.
a, \(ĐKXĐ:a;b>0;a\ne2b\\ \)
Xét: \(\dfrac{2\left(a+b\right)}{\sqrt{a^3}-2\sqrt{2b^3}}-\dfrac{\sqrt{a}}{a+\sqrt{2ab}+2b}=\dfrac{2\left(a+b\right)}{\left(\sqrt{a}-\sqrt{2b}\right)\left(a+\sqrt{2ab}+2b\right)}-\dfrac{\sqrt{a}}{a+\sqrt{2ab}+2b}=\dfrac{a+2b+\sqrt{2ab}}{\left(\sqrt{a}-\sqrt{2b}\right)\left(a+\sqrt{2ab}+2b\right)}=\dfrac{1}{\sqrt{a}-\sqrt{2b}}\)\(\dfrac{\sqrt{a^3}+2\sqrt{2b^3}}{2b+\sqrt{2ab}}-\sqrt{a}=\dfrac{\left(\sqrt{a}+\sqrt{2b}\right)\left(a-\sqrt{2ab}+2b\right)}{\sqrt{2b}\left(\sqrt{a}+\sqrt{2b}\right)}-\sqrt{a}=\dfrac{\left(\sqrt{a}-\sqrt{2b}\right)^2}{\sqrt{2b}}\)\(\Rightarrow P=\dfrac{\sqrt{a}-\sqrt{2b}}{\sqrt{2b}}=\sqrt{\dfrac{a}{2b}}-1\)
b, Tự lm nhé.
Bài 6:
a: \(\Leftrightarrow\sqrt{x^2+4}=\sqrt{12}\)
=>x^2+4=12
=>x^2=8
=>\(x=\pm2\sqrt{2}\)
b: \(\Leftrightarrow4\sqrt{x+1}-3\sqrt{x+1}=1\)
=>x+1=1
=>x=0
c: \(\Leftrightarrow3\sqrt{2x}+10\sqrt{2x}-3\sqrt{2x}-20=0\)
=>\(\sqrt{2x}=2\)
=>2x=4
=>x=2
d: \(\Leftrightarrow2\left|x+2\right|=8\)
=>x+2=4 hoặcx+2=-4
=>x=-6 hoặc x=2
b)CM: \(ab\sqrt{1+\dfrac{1}{a^2b^2}}-\sqrt{a^2b^2+1}=0\)
\(VT=ab\sqrt{\dfrac{a^2b^2+1}{\left(ab\right)^2}}-\sqrt{a^2b^2+1}\)
\(VT=ab\dfrac{\sqrt{a^2b^2+1}}{ab}-\sqrt{a^2b^2+1}\)
\(VT=\sqrt{a^2b^2+1}-\sqrt{a^2b^2+1}\)
\(VT=0=VP\)
b)\(\left(a-b\right)\sqrt{\dfrac{a^2b^2}{\left(a-b\right)^2}}=\left(a-b\right).\dfrac{ab}{a-b}=ab\)