Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(2\sqrt{3}+\sqrt{5}\right).\sqrt{3}-\sqrt{60}\)
\(=\)\(2\sqrt{3}.\sqrt{3}+\sqrt{5}.\sqrt{3}-\sqrt{60}\)
\(=\)\(6+\sqrt{15}-\sqrt{60}\)
\(=\)\(6-\sqrt{15}\)
\(\left(2\sqrt{3}+\sqrt{5}\right)\sqrt{3}-\sqrt{60}\)
=\(6+\sqrt{15}-\sqrt{2^2.15}\)
=\(6+\sqrt{15}-2\sqrt{15}\)
=\(6-\sqrt{15}\)
k mk nha
a, \(A=\left(\sqrt{12}-2\sqrt{5}\right)\sqrt{3}+\sqrt{60}\)
\(=\left(2\sqrt{3}-2\sqrt{5}\right)\sqrt{3}+2\sqrt{15}\)
\(=2\sqrt{9}-2\sqrt{15}+2\sqrt{15}=2\sqrt{9}\)
b, \(B=\frac{\sqrt{4x}}{x-3}\sqrt{\frac{x^2-6x+9}{x}}=\frac{2\sqrt{x}}{x-3}.\sqrt{\frac{\left(x-3\right)^2}{x}}\)
\(=\frac{2\sqrt{x}}{x-3}.\frac{x-3}{\sqrt{x}}=2\)
\(\sqrt{\frac{3\sqrt{5}+1}{2\sqrt{5}-3}}\left(\sqrt{10}-\sqrt{2}\right)\)
\(=\left(\sqrt{10}-\sqrt{2}\right)\sqrt{3+\sqrt{5}}\)
?? :v
\(\sqrt{\frac{3\sqrt{5}+1}{2\sqrt{5}-3}}\left(\sqrt{10}-\sqrt{2}\right)\)
\(=\sqrt{\frac{\left(3\sqrt{5}+1\right)\left(2\sqrt{5}+3\right)}{\left(2\sqrt{5}-3\right)\left(2\sqrt{5}+3\right)}}.\left(\sqrt{10}-\sqrt{2}\right)\)
\(=\sqrt{3+\sqrt{5}}.\sqrt{2}.\left(\sqrt{5}-1\right)\)
\(=\sqrt{6+2\sqrt{5}}.\left(\sqrt{5}-1\right)\)
\(=\left(\sqrt{5}+1\right)\left(\sqrt{5}-1\right)=4\)
\(\frac{1}{3-\sqrt{7}}-\frac{1}{3+\sqrt{7}}=\frac{3+\sqrt{7}}{\left(3-\sqrt{7}\right)\left(3+\sqrt{7}\right)}-\frac{3-\sqrt{7}}{\left(3-\sqrt{7}\right)\left(3+\sqrt{7}\right)}\)
\(=\frac{3+\sqrt{7}-3+\sqrt{7}}{\left(3-\sqrt{7}\right)\left(3+\sqrt{7}\right)}=\frac{2\sqrt{7}}{9-7}=\sqrt{7}\)
a, \(\frac{1}{3-\sqrt{7}}-\frac{1}{3+\sqrt{7}}=\frac{3+\sqrt[]{7}-3+\sqrt{7}}{\left(3-\sqrt{7}\right)\left(3+\sqrt{7}\right)}\)
\(=\frac{2\sqrt{7}}{9-7}=\sqrt{7}\)
Bạn nên gõ đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề và hỗ trợ bạn tốt hơn nhé.
\(\left(5+\frac{2\sqrt{6}}{\sqrt{3}}+\sqrt{2}\right)-\left(5-\frac{2\sqrt{6}}{\sqrt{3}}-\sqrt{2}\right)\)
=\(5+\frac{2\sqrt{6}}{\sqrt{3}}+\sqrt{2}-5+\frac{2\sqrt{6}}{\sqrt{3}}+\sqrt{2}\)
=\(\left(5-5\right)+\left(\frac{2\sqrt{6}}{\sqrt{3}}+\frac{2\sqrt{6}}{\sqrt{3}}\right)+\left(\sqrt{2}+\sqrt{2}\right)\)
=\(0+\frac{4\sqrt{6}}{\sqrt{3}}+2\sqrt{2}\)
=\(\frac{4\sqrt{2}.\sqrt{3}}{\sqrt{3}}+2\sqrt{2}\)
=\(4\sqrt{2}+2\sqrt{2}\)
=\(6\sqrt{2}\)