K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 7 2021

a) `(x+y)^2+(x-y)^2=x^2+2xy+y^2+x^2-2xy+y^2=2x^2+2y^2`

b) `(a-b^2)(a+b^2)=a^2-(b^2)^2=a^2-b^4`

16 tháng 6 2015

Em làm thử nếu sai thì thôi ạ (vì mới học lớp 6)

a) 

Ta có:

\(\left(a+b\right)^2-\left(a-b\right)^2=a^2.b^2-a^2:b^2\)

\(=a^2.b^2-a^2.\frac{1}{b^2}=a^2.\left(b^2-\frac{1}{b^2}\right)\)

Chắc thế ạ, em chỉ làm 1 phần vì sợ sai

 

16 tháng 6 2015

a)(a+b)2-(a-b)2=(a+b+a-b)(a+b-a+b)=2a.2b=4ab

b)(a+b)3-(a-b)3-2ab3

=(a+b-a+b)[(a+b)2+(a+b)(a-b)+(a-b)2]-2ab3

=2a(a2+2ab+b2+a2-b2+a2-2ab+b2)-2ab3

=2a(3a2+b2)-2ab3

=6a3+2ab2-2ab3

c)(x+y+z)2-2(x+y+z)(x+y)+(x+y)2

=(x+y+z-x-y)2=z2

3 tháng 10 2021

a) Ta có: (a+b)2 - (a-b)2

        = (a+b+a-b)(a+b-a+b)

        =    2a.2b

        = 4ab

b) Ta có: (a+b)3 - (a-b)- 2b3

        = a3 + 3a2b + 3ab2 + b3 - a3 + 3a2b - 3ab2 + b3 - 2b3

        = 6a2b

c) Ta có: (x+y+z)2 - 2(x+y+z)(x+y) + (x+y)2

        = (x+y+z-x-y)2

          = z2

23 tháng 3 2020

\(A=\frac{2x^2+4x}{x^3-4x}+\frac{x^2-4}{x^2+2x}+\frac{2}{2-x}\left(x\ne0;x\ne\pm2\right)\)

\(A=\frac{2x^2+4x}{x\left(x^2-4\right)}+\frac{\left(x-2\right)\left(x+2\right)}{x\left(x+2\right)}-\frac{2}{x-2}\)

\(A=\frac{2x^2+4x}{x\left(x-2\right)\left(x+2\right)}+\frac{\left(x-2\right)^2\left(x+2\right)}{x\left(x-2\right)\left(x+2\right)}-\frac{2x\left(x+2\right)}{x\left(x-2\right)\left(x+2\right)}\)

\(A=\frac{2x^2+4x}{x\left(x-2\right)\left(x+2\right)}+\frac{x^3-2x^2-4x+8}{x\left(x-2\right)\left(x+2\right)}-\frac{2x^2+4x}{x\left(x-2\right)\left(x+2\right)}\)

\(A=\frac{2x^2+4x+x^3-2x^2-4x+8-2x^2-4x}{x\left(x-2\right)\left(x+2\right)}\)

\(A=\frac{-2x^2-4x+8}{x\left(x-2\right)\left(x+2\right)}=\frac{-2x\left(x+2\right)+8}{x\left(x-2\right)\left(x+2\right)}=\frac{-2x+8}{x\left(x-2\right)}\)

Vậy \(A=\frac{-2x+8}{x\left(x-2\right)}\left(x\ne0;x\ne\pm2\right)\)

b) \(A=\frac{-2x+8}{x\left(x-2\right)}\left(x\ne0;x\ne\pm2\right)\)

Ta có: x=4 (tmđk) thay vào A ta có:

\(A=\frac{-2\cdot4+8}{4\left(4-2\right)}=\frac{-8+8}{4\cdot2}=\frac{0}{8}=0\)

Vậy A=0 với x=4

10 tháng 6 2015

a)(x+y+z)2 - 2(x+y+z)(x+y)+(x+y)2

=[(x+y+z)-(x-y)]2

=(x+y+z-x-y)2

=z2

b) (a+b)3 - (a - b)3 - 2b3

=[(a+b)-(a-b)][(a+b)2+(a+b)(a-b)+(a-b)2]-2b3

=(a+b-a+b)(a2+2ab+b2+a2-b2+a2-2ab+b2)-2b3

=2b(3a2+b2)-2b3

=6a2b+2b3-2b3

=6a2b

c) (a + b)2 - (a - b)2=[a+b+(a-b)][a+b-(a-b)]=(a+b+a-b)(a+b-a+b)

                         =2a.2b=4ab

7 tháng 10 2023

a) ĐKXĐ: \(x\ne2y,x\ne-y;x\ne-1\) 

b) \(B=\left(\dfrac{x-y}{2y-x}-\dfrac{x^2+y^2+y-2}{x^2-xy-2y^2}\right):\dfrac{4x^4+4x^2y+y^2-4}{x^2+y+xy+x}\) 

\(B=\left[\dfrac{y-x}{x-2y}-\dfrac{x^2+y^2+y-2}{\left(x+y\right)\left(x-2y\right)}\right]:\dfrac{4x^4+4x^2y+y^2-4}{x\left(x+y\right)+\left(x+y\right)}\)

\(B=\left[\dfrac{\left(y-x\right)\left(x+y\right)}{\left(x-2y\right)\left(x+y\right)}-\dfrac{x^2+y^2+y-2}{\left(x+y\right)\left(x-2y\right)}\right]:\dfrac{\left(2x^2+y+2\right)\left(2x^2+y-2\right)}{\left(x+1\right)\left(x+y\right)}\)

\(B=\dfrac{y^2-x^2-x^2-y^2-y+2}{\left(x+y\right)\left(x-2y\right)}:\dfrac{\left(2x^2+y+2\right)\left(2x^2+y-2\right)}{\left(x+1\right)\left(x+y\right)}\)

\(B=\dfrac{-2x^2-y+2}{\left(x+y\right)\left(x-2y\right)}\cdot\dfrac{\left(x+1\right)\left(x+y\right)}{\left(2x^2+y+2\right)\left(2x^2+y-2\right)}\)

\(B=\dfrac{-\left(2x^2+y-2\right)}{\left(x+y\right)\left(x-2y\right)}\cdot\dfrac{\left(x+1\right)\left(x+y\right)}{\left(2x^2+y+2\right)\left(2x^2+y-2\right)}\)

\(B=\dfrac{-\left(x+1\right)}{\left(x-2y\right)\left(2x^2+y+2\right)}\)

14 tháng 6 2016

\(a,2\left(x-y\right)\left(x+y\right)+\left(x+y\right)^2+\left(x-y\right)^2\)

\(=2\left(x^2-y^2\right)+x^2+2xy+y^2+x^2-2xy+y^2\)

\(=2x^2-2y^2+x^2+2xy+y^2+x^2-2xy+y^2\)

\(=4x^2\)

a,2(x-y)(x+y)+(x+y)2+(x-y)2

=2(x2-y2)+x2+2xy+y2+x2-2xy+y2

=4x2

b,=x2