K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 1 2021

\(\left(\frac{x^2+x+1}{x^3-1}-\frac{x-1}{x^2+2x+1}+\frac{1}{x^2-1}\right)\div\frac{x-1}{x+1}\)

\(=\left(\frac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}-\frac{x-1}{\left(x+1\right)^2}+\frac{1}{\left(x-1\right)\left(x+1\right)}\right)\div\frac{x-1}{x+1}\)

\(=\left(\frac{\left(x+1\right)^2\left(x^2+x+1\right)}{\left(x+1\right)^2\left(x-1\right)\left(x^2+x+1\right)}-\frac{\left(x-1\right)^2\left(x^2+x+1\right)}{\left(x+1\right)^2\left(x-1\right)\left(x^2+x+1\right)}+\frac{\left(x+1\right)\left(x^2+x+1\right)}{\left(x+1\right)^2\left(x-1\right)\left(x^2+x+1\right)}\right)\)\(\div\frac{x-1}{x+1}\)

 
25 tháng 12 2018

\(\left(\frac{1}{x}+1-\frac{3}{x^3+1}-\frac{3}{x^2-x+1}\right)\cdot\frac{3x^2-3x+3}{\left(x+1\right).\left(x+2\right)}-\frac{2x-2}{x^2+2x}\)

\(=\left(\frac{x+1}{x}-\frac{3}{\left(x+1\right).\left(x^2-x+1\right)}+\frac{3.\left(x+1\right)}{\left(x+1\right).\left(x^2-x+1\right)}\right)\cdot\frac{3.\left(x^2-x+1\right)}{\left(x+1\right).\left(x+2\right)}-\frac{2.\left(x-1\right)}{x.\left(x+2\right)}\)

\(=\left[\frac{\left(x+1\right)^2.\left(x^2-x+1\right)-3x+3x^2+3x}{x.\left(x+1\right).\left(x^2-x+1\right)}\right]\cdot\frac{3.\left(x^2-x+1\right)}{\left(x+1\right).\left(x+2\right)}-\frac{2.\left(x-1\right)}{x.\left(x+2\right)}\)

\(=\left[\frac{x^4+x^3+x+1+3x^2}{x.\left(x+1\right).\left(x^2-x+1\right)}\right]\cdot\frac{3.\left(x^2-x+1\right)}{\left(x+1\right).\left(x+2\right)}-\frac{2.\left(x-1\right)}{x.\left(x+2\right)}\)

\(=\frac{3x^4+3x^3+3x+3+9x^2}{x.\left(x+1\right)^2.\left(x+2\right)}-\frac{2.\left(x-1\right)}{x.\left(x+2\right)}=\frac{3x^4+3x^3+3x+3+9x^2}{x.\left(x+1\right)^2.\left(x+2\right)}-\frac{2x^3+2x^2-2x-2}{x.\left(x+1\right)^2.\left(x+2\right)}\)

\(=\frac{3x^4+x^3+7x^2+5x+5}{x.\left(x+1\right)^2.\left(x+2\right)}\)

27 tháng 2 2020

\(\left(\frac{1}{x+1}-\frac{3}{x^3+1}+\frac{3}{x^2-x+1}\right):\frac{3x^2-3x+3}{\left(x+1\right)\left(x+2\right)}-\frac{2x-2}{x^2+2x}\left(x\ne-1;x\ne0;x\ne-2\right)\)

\(=\left(\frac{1}{x+1}-\frac{3}{\left(x+1\right)\left(x^2-x+1\right)}+\frac{3}{x^2-x+1}\right):\frac{3x^3-3x+3}{\left(x+1\right)\left(x+2\right)}-\frac{2\left(x-1\right)}{x\left(x+2\right)}\)

\(=\left(\frac{x^2-x+1}{\left(x+1\right)\left(x^2-x+1\right)}-\frac{3}{\left(x+1\right)\left(x^2-x+1\right)}+\frac{3x+3}{\left(x+1\right)\left(x^2-x+1\right)}\right)\)\(:\frac{3x^2-3x+3}{\left(x+1\right)\left(x+2\right)}-\frac{2\left(x-1\right)}{x\left(x+2\right)}\)

\(=\frac{x^2-x+1-3+3x+3}{\left(x+1\right)\left(x^2-x+1\right)}:\frac{3x^2-3x+3}{\left(x+1\right)\left(x+2\right)}-\frac{2\left(x-1\right)}{x\left(x+2\right)}\)

\(=\frac{x^2+2x+1}{\left(x+1\right)\left(x^2-x+1\right)}:\frac{3\left(x^2-x+1\right)}{\left(x+1\right)\left(x+1\right)}-\frac{2\left(x-1\right)}{x\left(x+2\right)}\)

\(=\frac{\left(x+1\right)\left(x+2\right)}{\left(x+1\right)\left(x^2-x+1\right)}\cdot\frac{\left(x+1\right)\left(x+2\right)}{3\left(x^2-x+1\right)}-\frac{2\left(x-1\right)}{x\left(x+2\right)}\)

\(=\frac{\left(x+2\right)^2\left(x+1\right)}{3\left(x^2-x+1\right)^2}-\frac{2\left(x-1\right)}{x\left(x+2\right)}\)

\(\left(\frac{1}{x-1}-\frac{x}{1-x^3}.\frac{x+x+1}{x+1}\right):\left(\frac{2x+1}{x^2+x+1}\right)\)

\(=\left(\frac{1}{x-1}-\frac{x}{\left(1-x\right)\left(1^2+x+x^2\right)}.\frac{x\left(x+1\right)}{\left(x+1\right)}\right):\left(\frac{2x+1}{x^2+x+1}\right)\)

3 tháng 2 2017

 D=[1/(x-1)-x/(1-x^3).(x^2+x+1)/(x+1)]:[(2x+1)/(x^2+x+1)]

=[1/(x-1)+x/(x-1)(x^2+x+1).(x^2+x+1)/(x+1)]:[(2x+1)/(x^2+x+1)]

=[1/(x-1)+x/(x-1)(x+1)]:[(2x+1)/(x^2+x+1)]

=(x+1+x)/(x-1)(x+1) . x(x+1)+1/2x+1

=2x+1/(x-1)(x+1)  .  x(x+1)+1/2x+1

=x+1/x-1

\(A=\left(\dfrac{1}{x-2}+\dfrac{2x}{\left(x-2\right)\left(x+2\right)}+\dfrac{1}{x+2}\right)\cdot\dfrac{2-x}{x}\)

\(=\dfrac{x+2+2x+x-2}{-\left(2-x\right)\left(x+2\right)}\cdot\dfrac{2-x}{x}\)

\(=\dfrac{4x}{-\left(x+2\right)\cdot x}=\dfrac{-4}{x+2}\)

13 tháng 8 2020

\(=\frac{\left(2x+1\right)\left(x+1\right)+8-\left(x-1\right)^2}{x^2-1}.\frac{x^2-1}{5}=\)

\(=\frac{2x^2+3x+1+8-x^2+2x-1}{5}=\frac{x^2+5x+8}{5}\)

13 tháng 8 2020

\(\left(\frac{2x+1}{x-1}+\frac{8}{x^2-1}-\frac{x-1}{x+1}\right)\cdot\frac{x^2-1}{5}\left(x\ne\pm1\right)\)

\(=\left(\frac{2x+1}{x-1}+\frac{8}{\left(x-1\right)\left(x+1\right)}-\frac{x-1}{x+1}\right)\cdot\frac{\left(x-1\right)\left(x+1\right)}{5}\)

\(=\left(\frac{\left(2x+1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}+\frac{8}{\left(x-1\right)\left(x+1\right)}-\frac{\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)}\right)\cdot\frac{\left(x-1\right)\left(x+1\right)}{5}\)

\(=\left(\frac{2x^2+3x+1}{\left(x-1\right)\left(x+1\right)}+\frac{8}{\left(x-1\right)\left(x+1\right)}-\frac{x^2-2x+1}{\left(x-1\right)\left(x+1\right)}\right)\cdot\frac{\left(x-1\right)\left(x+1\right)}{5}\)

\(=\frac{2x^2+3x+1+8-x^2+2x-1}{\left(x-1\right)\left(x+1\right)}\cdot\frac{\left(x-1\right)\left(x+1\right)}{5}\)

\(=\frac{\left(x^2+5x+8\right)\cdot\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)5}=\frac{x^2+5x+8}{5}\)

21 tháng 4 2020

a) Ta có :A = \(\left(\frac{\left(x-1\right)^2}{3x+\left(x-1\right)^2}-\frac{1-2x^2+4x}{x^3-1}+\frac{1}{x-1}\right):\frac{x^2+x}{x^3+x}\)

ĐK: \(\hept{\begin{cases}x\ne0\\x\ne1\end{cases}}\)

A = \(\left(\frac{\left(x-1\right)^2}{x^2+x+1}-\frac{1-2x^2+4x}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{1}{x-1}\right):\frac{x\left(x+1\right)}{x\left(x^2+1\right)}\)

    \(\frac{\left(x-1\right)^3-1+2x^2-4x+x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}.\frac{x^2+1}{x+1}\)

    \(\frac{x^3-3x^2+3x-1+3x^2-3x}{\left(x-1\right)\left(x^2+x+1\right)}.\frac{x^2+1}{x+1}\)

    = \(\frac{x^3-1}{\left(x-1\right)\left(x^2+x+1\right)}.\frac{x^2+1}{x+1}=1.\frac{x^2+1}{x+1}=\frac{x^2+1}{x+1}\)

b) Để A > - 1 <=> \(\frac{x^2+1}{x+1}>-1\)

                       <=> \(\frac{x^2+1}{x+1}+1>0\)

                        <=> \(\frac{x^2+x+2}{x+1}>0\)

Vì x2 + x + 2 >0 \(\forall x\)

=> A > 0 <=> x + 1 > 0 <=> x > -1