Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(1-\dfrac{1}{2}\right).\left(1-\dfrac{1}{3}\right).............\left(1-\dfrac{1}{2014}\right)\)
\(=\left(\dfrac{2}{2}-\dfrac{1}{2}\right).\left(\dfrac{3}{3}-\dfrac{1}{3}\right)..............\left(\dfrac{2014}{2014}-\dfrac{1}{2014}\right)\)
\(=\dfrac{1}{2}.\dfrac{2}{3}................\dfrac{2013}{2014}\)
\(=\dfrac{1}{2014}\)
\(\left(1-\dfrac{1}{2}\right).\left(1-\dfrac{1}{3}\right)....\left(1-\dfrac{1}{2014}\right)\)
\(=\left(\dfrac{2}{2}-\dfrac{1}{2}\right).\left(\dfrac{3}{3}-\dfrac{1}{3}\right).....\left(\dfrac{2014}{2014}-\dfrac{1}{2014}\right)\)
\(=\dfrac{1}{2}.\dfrac{2}{3}.....\dfrac{2013}{2014}\)
\(=\dfrac{1}{2014}\)
Chúc bạn học tốt!
\(A=\left(1+\frac{1}{3}\right).\left(1+\frac{1}{8}\right).\left(1+\frac{1}{15}\right)...\left(1+\frac{1}{n^2+2n}\right)\)
\(A=\frac{3+1}{3}.\frac{8+1}{8}.\frac{15+1}{15}...\frac{n^2+2n+1}{n^2+2n}\)
\(A=\frac{4}{3}.\frac{9}{8}.\frac{16}{15}...\frac{\left(n+1\right)^2}{n^2+2n}\)
\(A=\frac{2.2}{1.3}.\frac{3.3}{2.4}.\frac{4.4}{3.5}...\frac{\left(n+1\right)^2}{n.\left(n+2\right)}\)
\(A=\frac{2.3.4...\left(n+1\right)}{1.2.3...n}.\frac{2.3.4...\left(n+1\right)}{3.4.5...\left(n+2\right)}\)
\(A=\left(n+1\right).\frac{2}{n+2}=\frac{2.\left(n+1\right)}{n+2}\)
Ta có : \(1+\frac{1}{k^2+2k}=\frac{k^2+2k+1}{k^2+2k}=\frac{\left(k+1\right)^2}{k\left(k+2\right)}\) với k thuộc N*
Áp dụng với k = 1,2,3,....,n được :
\(A=\left(1+\frac{1}{3}\right)\left(1+\frac{1}{8}\right)\left(1+\frac{1}{15}\right)...\left(1+\frac{1}{n^2+2n}\right)\)
\(=\frac{\left(1+1\right)^2}{1.\left(1+2\right)}.\frac{\left(2+1\right)^2}{2.\left(2+2\right)}.\frac{\left(3+1\right)^2}{3.\left(3+2\right)}...\frac{\left(n+1\right)^2}{n.\left(n+2\right)}\)
\(=\frac{\left[2.3.4...\left(n+1\right)\right]^2}{1.2.3...n.3.4.5...\left(n+2\right)}=\frac{\left[\left(n+1\right)!\right]^2}{n!.\frac{\left(n+2\right)!}{2}}\)
\(B=\left(\frac{3}{5}\right)^2\cdot5^2-\left(2\frac{1}{4}\right)^3:\left(\frac{3}{4}\right)^3+\frac{1}{2}\)
\(B=\left(\frac{3}{5}\cdot5\right)^2-\left(\frac{9}{4}:\frac{3}{4}\right)^3+\frac{1}{2}\)
\(B=3^2-\left(\frac{9}{4}\cdot\frac{4}{3}\right)^3+\frac{1}{2}\)
\(B=3^2-3^3+\frac{1}{2}=-18+\frac{1}{2}=-\frac{35}{2}\)
A= \(\left(\frac{3}{4}\right)\left(\frac{8}{9}\right)\left(\frac{15}{16}\right)......\left(\frac{\left(n-1\right)\left(n+1\right)}{n.n}\right)\)
\(=\frac{3.8.15....\left(n-1\right)\left(n+1\right)}{\left(2.3.4......n\right)\left(2.3.4.......n\right)}=\frac{1.3.2.4.3.5.......\left(n-1\right)\left(n+1\right)}{\left(2.3.4.....n\right)\left(2.3.4..................n\right)}=\frac{\left(1.2.3.......\left(n-1\right)\right)\left(3.4.5........\left(n+1\right)\right)}{\left(2.3.4.....n\right)\left(2.3.4...........n\right)}\)
\(=\frac{1.\left(n+1\right)}{n.2}=\frac{n+1}{2n}\)
mình chỉ tick cho những người giải thôi, không chấp nhận trường hợp xin tick, và cấm tình trạng spam bậy. Nếu ai giải được thì mình tick, nếu ai không giải, xin tick, hay spam để kiếm điểm hỏi đáp thì miễn.
\(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)...........\left(1-\frac{1}{2014}\right)\)
\(=\left(\frac{2}{2}-\frac{1}{2}\right)\left(\frac{3}{3}-\frac{1}{3}\right).........\left(\frac{2014}{2014}-\frac{1}{2014}\right)\)
\(=\frac{1}{2}.\frac{2}{3}............\frac{2013}{2014}\)
\(=\frac{1}{2014}\)
(1-1/2).(1-1/3)......(1-1/2014)
=1/2.2/3.....2013/2014
=1.2....2013/2.3.....2014
=1/2014