\(\dfrac{5}{2x^2+6x}-\dfrac{4-3x^2}{x^2-9}\)- 3

 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 5 2021

\(D=\dfrac{5}{2x^2+6x}-\dfrac{4-3x^2}{x^2-9}-3\) (đk:\(x\ne3;x\ne-3\))

\(=\dfrac{5}{2x\left(x+3\right)}-\dfrac{4-3x^2}{\left(x-3\right)\left(x+3\right)}-3\)

\(=\dfrac{5\left(x-3\right)}{2x\left(x-3\right)\left(x+3\right)}-\dfrac{\left(4-3x^2\right).2x}{2x\left(x-3\right)\left(x+3\right)}-\dfrac{3.2x\left(x-3\right)\left(x+3\right)}{2x\left(x-3\right)\left(x+3\right)}\)

\(=\dfrac{5x-15-8x+6x^3-6x\left(x^2-9\right)}{2x\left(x-3\right)\left(x+3\right)}\)

\(=\dfrac{51x-15}{2x\left(x-3\right)\left(x+3\right)}\)

28 tháng 5 2021

ĐK có x \(\ne\) 0 nữa nha bạn

22 tháng 6 2019

Trong app này có cả bộ đề thi + thi thử bạn thử xem nha! https://giaingay.com.vn/downapp.html

a: ĐK của A là x<>-3; x<>2

ĐKXĐ của B là x<>3

DKXĐ của C là x<>0; x<>4/3

ĐKXĐ của D là x<>-2

ĐKXĐ của E là x<>2; x<>-2

ĐKXĐ của F là x<>2

b,c:

\(A=\dfrac{2\left(x+3\right)}{\left(x+3\right)\left(x-2\right)}=\dfrac{2}{x-2}\)

Để A=0 thì 2=0(loại)

\(B=\dfrac{\left(x-3\right)\left(x+3\right)}{\left(x-3\right)\left(x-3\right)}=\dfrac{x+3}{x-3}\)

Để B=0 thì x+3=0

=>x=-3

\(C=\dfrac{\left(3x-4\right)\left(3x+4\right)}{x\left(3x-4\right)}=\dfrac{3x+4}{x}\)

Để C=0 thì 3x+4=0

=>x=-4/3

\(D=\dfrac{\left(x+2\right)^2}{2\left(x+2\right)}=\dfrac{x+2}{2}\)

Để D=0 thì x+2=0

=>x=-2(loại)

\(E=\dfrac{x\left(2-x\right)}{\left(x+2\right)\left(x-2\right)}=\dfrac{-x}{x+2}\)

Để E=0 thì x=0

\(F=\dfrac{3\left(x^2+2x+4\right)}{\left(x-2\right)\left(x^2+2x+4\right)}=\dfrac{3}{x-2}\)

Để F=0 thì 3=0(loại)

Bài 1:

\(D=-3x^2+x+15x-5-3\left(2x^2-5x+2\right)\)

\(=-3x^2+16x-5-6x^2+15x-6\)

\(=-9x^2+31x-11\)

\(=-9\cdot\dfrac{1}{9}+\dfrac{31}{3}-11\)

=-11-1+31/3=-12+31/3=-5/3

b: \(E=x^2+x-56-x^2+7x-10=8x-66\)

\(=-\dfrac{8}{5}-66=-\dfrac{338}{5}\)

c: \(F=-3\left(2x^2+x-16x-8\right)-\left(-3x^2+2x-15x+10\right)-4x^2+24x\)

\(=-6x^2+45x+24+3x^2+13x-10-4x^2+24x\)

\(=-4x^2+82x+14\)

\(=-4\cdot9-82\cdot3+14=-268\)

9 tháng 6 2021

a, ĐKXĐ: x≠±3

A=\(\left(\dfrac{3-x}{x+3}.\dfrac{x^2+6x+9}{x^2-9}+\dfrac{x}{x+3}\right):\dfrac{3x^2}{x+3}\)

A=\(\left(\dfrac{3-x}{x+3}.\dfrac{\left(x+3\right)^2}{\left(x+3\right)\left(x-3\right)}+\dfrac{x}{x+3}\right):\dfrac{3x^2}{x+3}\)

A=\(\left(\dfrac{3-x}{x-3}+\dfrac{x}{x+3}\right):\dfrac{3x^2}{x+3}\)

A=\(\left(\dfrac{9-x^2}{x^2-9}+\dfrac{x^2-3x}{x^2-9}\right):\dfrac{3x^2}{x+3}\)

A=\(\left(\dfrac{-3}{x+3}\right):\dfrac{3x^2}{x+3}\)

A=\(\dfrac{-1}{x^2}\)

b, Thay x=\(-\dfrac{1}{2}\) (TMĐKXĐ) vào A ta có:

\(\dfrac{-1}{\left(-\dfrac{1}{2}\right)^2}\)=-4

c, A<0 ⇔ \(\dfrac{-1}{x^2}< 0\) ⇔ x2>0 (Đúng với mọi x)

Vậy để A<0 thì x đúng với mọi giá trị (trừ ±3)

 

a: \(B=\dfrac{21+x^2-x-12-x^2+4x-3}{\left(x+3\right)\left(x-3\right)}:\dfrac{x+3-1}{x+3}\)

\(=\dfrac{3x+6}{\left(x+3\right)\left(x-3\right)}\cdot\dfrac{x+3}{x+2}\)

\(=\dfrac{3}{x-3}\)

b: |2x+1|=5

=>2x+1=5 hoặc 2x+1=-5

=>x=-3(loại) hoặc x=2(nhận)

Khi x=2 thì \(B=\dfrac{3}{2-3}=-3\)

c: Để B=-3/5 thì x-3=-5

=>x=-2(loại)

d: Để B<0 thì x-3<0

=>x<3

7 tháng 12 2018

1)trước khi rút gọn bạn cần tìm điều kiện để có phân thức này như

+)Điều kiện: \(\left\{{}\begin{matrix}x-1\ne0\\x^2-1\ne\\x+1\ne0\end{matrix}\right.0}\)

\(\Rightarrow\left\{{}\begin{matrix}x\ne1\\x\ne-1\end{matrix}\right.\)

rồi bạn rút gọn

2) với \(x=1\dfrac{1}{3}=\dfrac{4}{3}\) khi đó bạn thay x vào biểu thức A thì tìm đc giá trị

3) bạn tự làm đc :))

7 tháng 12 2018

(\(\dfrac{x+1}{x-1}\)-- \(\dfrac{x^2+2x+9}{x^2-1}\)).\(\dfrac{x+1}{5}\)=(\(\dfrac{\left(x+1\right)^2}{x^2-1}\)--\(\dfrac{x^2+2x+9}{x^2-1}\)):\(\dfrac{x+1}{5}\)

=\(\dfrac{-8}{x^2-1}\):\(\dfrac{x+1}{5}\)=\(\dfrac{-8}{5\left(x-1\right)}\)

Cố gắng lên bạn nhé!

Sửa đề: \(P=\dfrac{2}{2x+3}+\dfrac{3}{2x+1}-\dfrac{6x+5}{\left(2x+1\right)\left(2x+3\right)}\)

\(=\dfrac{4x+2+6x+9-6x-5}{\left(2x+1\right)\left(2x+3\right)}\)

\(=\dfrac{4x+6}{\left(2x+1\right)\left(2x+3\right)}=\dfrac{2}{2x+1}\)

29 tháng 11 2022

a: \(B=\left(\dfrac{4x}{x+2}-\dfrac{\left(x-2\right)\left(x^2+2x+4\right)}{\left(x+2\right)\left(x^2-2x+4\right)}\cdot\dfrac{4\left(x^2-2x+4\right)}{\left(x-2\right)\left(x+2\right)}\right)\cdot\dfrac{x+2}{16}\cdot\dfrac{\left(x+2\right)\left(x+1\right)}{x^2+x+1}\)

\(=\left(\dfrac{4x}{x+2}-\dfrac{4\left(x^2+2x+4\right)}{\left(x+2\right)^2}\right)\cdot\dfrac{x+2}{16}\cdot\dfrac{\left(x+2\right)\left(x+1\right)}{x^2+x+1}\)

\(=\dfrac{4x^2+8x-4x^2-8x-16}{\left(x+2\right)^2}\cdot\dfrac{\left(x+2\right)^2\cdot\left(x+1\right)}{16\left(x^2+x+1\right)}\)

\(=\dfrac{-16}{16\left(x^2+x+1\right)}\cdot\left(x+1\right)=-\dfrac{x+1}{x^2+x+1}\)

b: \(B=\dfrac{\left(x+2\right)\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{x+2}{x^2+x+1}\)

\(P=A+B=\dfrac{-x-1+x+2}{x^2+x+1}=\dfrac{1}{x^2+x+1}=\dfrac{1}{\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}}< =1:\dfrac{3}{4}=\dfrac{4}{3}\)

Dấu = xảy ra khi x=-1/2