Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1,=\left|1-\sqrt{2}\right|+\left|\sqrt{2}+3\right|\\ =1-\sqrt{2}+3+\sqrt{2}\\ =4\\ 2,=\left|\sqrt{3}-2\right|+\left|\sqrt{3}-1\right|\\ =\sqrt{3}-2+\sqrt{3}-1\\ =2\sqrt{3}-3\\ 3,=\left|\sqrt{5}-3\right|+\left|\sqrt{5}-2\right|\\ =\sqrt{5}-3+\sqrt{5}-2\\ =2\sqrt{5}-5\\ 4,=\left|3+\sqrt{2}\right|+\left|3-\sqrt{2}\right|\\ =3+\sqrt{2}+\sqrt{3}-\sqrt{2}\\ =3+\sqrt{3}\\ 5,=\left|2-\sqrt{3}\right|-\left|2+\sqrt{3}\right|\\ =2-\sqrt{3}-\left(2+\sqrt{3}\right)\\ =2-\sqrt{3}-2-\sqrt{3}\\ =-2\sqrt{3}\)
a) Ta có: \(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)
\(=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{20-2\cdot\sqrt{20}\cdot3+9}}}\)
\(=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{\left(2\sqrt{5}-3\right)^2}}}\)
\(=\sqrt{\sqrt{5}-\sqrt{3-\left(2\sqrt{5}-3\right)}}\)
\(=\sqrt{\sqrt{5}-\sqrt{6-2\sqrt{5}}}\)
\(=\sqrt{\sqrt{5}-\sqrt{5-2\cdot\sqrt{5}\cdot1+1}}\)
\(=\sqrt{\sqrt{5}-\sqrt{\left(\sqrt{5}-1\right)^2}}\)
\(=\sqrt{\sqrt{5}-\left(\sqrt{5}-1\right)}\)
\(=\sqrt{\sqrt{5}-\sqrt{5}+1}\)
\(=\sqrt{1}=1\)
b) Ta có: \(\sqrt{6+2\sqrt{5}-\sqrt{29-12\sqrt{5}}}\)
\(=\sqrt{6+2\sqrt{5}-\sqrt{20-2\cdot2\sqrt{5}\cdot3+9}}\)
\(=\sqrt{6+2\sqrt{5}-\sqrt{\left(2\sqrt{5}-3\right)^2}}\)
\(=\sqrt{6+2\sqrt{5}-\left(2\sqrt{5}-3\right)}\)
\(=\sqrt{6+3}=3\)
c) Sửa đề: \(\sqrt{2+\sqrt{5+\sqrt{13-\sqrt{48}}}}\)
Ta có: \(\sqrt{2+\sqrt{5+\sqrt{13-\sqrt{48}}}}\)
\(=\sqrt{2+\sqrt{5+\sqrt{12-2\cdot2\sqrt{3}\cdot1+1}}}\)
\(=\sqrt{2+\sqrt{5+\sqrt{\left(2\sqrt{3}-1\right)^2}}}\)
\(=\sqrt{2+\sqrt{5+2\sqrt{3}-1}}\)
\(=\sqrt{2+\sqrt{3+2\sqrt{3}\cdot1+1}}\)
\(=\sqrt{2+\sqrt{\left(\sqrt{3}+1\right)^2}}\)
\(=\sqrt{3+\sqrt{3}}\)
d) Ta có: \(\left(3-\sqrt{5}\right)\sqrt{3+\sqrt{5}}+\left(3+\sqrt{5}\right)\sqrt{3-\sqrt{5}}\)
\(=\dfrac{\left(6-2\sqrt{5}\right)\sqrt{6+2\sqrt{5}}+\left(6+2\sqrt{5}\right)\sqrt{6-2\sqrt{5}}}{2\sqrt{2}}\)
\(=\dfrac{\left(\sqrt{5}-1\right)^2\cdot\left(\sqrt{5}+1\right)+\left(\sqrt{5}+1\right)^2\cdot\left(\sqrt{5}-1\right)}{2\sqrt{2}}\)
\(=\dfrac{\left(\sqrt{5}-1\right)\left(\sqrt{5}+1\right)\left(\sqrt{5}-1+\sqrt{5}+1\right)}{2\sqrt{2}}\)
\(=\dfrac{4\cdot2\sqrt{5}}{2\sqrt{2}}\)
\(=\dfrac{8\sqrt{5}}{2\sqrt{2}}=\dfrac{4\sqrt{5}}{\sqrt{2}}=2\sqrt{10}\)
Làm luôn nhé
\(2B=21.2\left[\left(\sqrt{2+\sqrt{3}}+\sqrt{3-\sqrt{5}}\right)-6\left(\sqrt{2-\sqrt{3}}+\sqrt{3+\sqrt{5}}\right)\right]^2-2.15\sqrt{15}\)
\(2B=21\left(\sqrt{3}+1+\sqrt{5}-1\right)^2-6\left(\sqrt{3}-1+\sqrt{5}-1\right)^2-30\sqrt{15}\)
\(2B=21\left(\sqrt{3}+\sqrt{5}\right)^2-6\left(\sqrt{3}+\sqrt{5}\right)^2-30\sqrt{15}\)
\(2B=15\left(\sqrt{3}+\sqrt{5}\right)^2-30\sqrt{15}\)
\(2B=15\left(8+2\sqrt{15}\right)-30\sqrt{15}\)
\(2B=120+30\sqrt{15}-30\sqrt{5}\)
\(2B=120\)
\(B=60\)
\(\left(\dfrac{\sqrt{6}-\sqrt{2}}{1-\sqrt{3}}-\dfrac{5}{\sqrt{5}}\right)\left(\sqrt{5}-\sqrt{2}\right)=\left(\dfrac{\sqrt{2}\left(\sqrt{3}-1\right)}{1-\sqrt{3}}-\sqrt{5}\right)\left(\sqrt{5}-\sqrt{2}\right)\)
\(=\left(-\sqrt{2}-\sqrt{5}\right)\left(\sqrt{5}-\sqrt{2}\right)=-\left(\sqrt{2}+\sqrt{5}\right)\left(\sqrt{5}-\sqrt{2}\right)=-3\)
\(=\left[\dfrac{\sqrt{2}\left(\sqrt{3}-1\right)}{1-\sqrt{3}}-\sqrt{5}\right]\left(\sqrt{5}-\sqrt{2}\right)=\left(-\sqrt{2}-\sqrt{5}\right)\left(\sqrt{5}-\sqrt{2}\right)=-\left(\sqrt{5}+\sqrt{2}\right)\left(\sqrt{5}-\sqrt{2}\right)=-3\)
Ta có: \(\dfrac{3\left(\sqrt{5}-1\right)}{\left(\sqrt{5}+1\right)\left(\sqrt{5}+1\right)}\)
\(=\dfrac{3\left(\sqrt{5}-1\right)}{6+2\sqrt{5}}\)
\(=\dfrac{3\left(\sqrt{5}-1\right)\left(6-2\sqrt{5}\right)}{\left(6-2\sqrt{5}\right)\left(6+2\sqrt{5}\right)}\)
\(=\dfrac{3\left(6\sqrt{5}-10-6+2\sqrt{5}\right)}{16}\)
\(=\dfrac{3\left(8\sqrt{5}-16\right)}{16}\)
\(=\dfrac{3\cdot\left(\sqrt{5}-2\right)}{2}\)
\(A=\left(2+\dfrac{5-2\sqrt{5}}{2-\sqrt{5}}\right)\left(2+\dfrac{5+3\sqrt{5}}{3+\sqrt{5}}\right)\)
\(A=\left[2-\dfrac{\sqrt{5}\left(\sqrt{5}-2\right)}{\sqrt{5}-2}\right]\left[2+\dfrac{\sqrt{5}\left(\sqrt{5}+3\right)}{\sqrt{5}+3}\right]\)
\(A=\left(2-\sqrt{5}\right)\left(2+\sqrt{5}\right)\)
\(A=2^2-\left(\sqrt{5}\right)^2\)
\(A=4-5\)
\(A=-1\)
____
\(B=\left(\dfrac{15}{\sqrt{6}+1}+\dfrac{4}{\sqrt{6}-2}-\dfrac{12}{3-\sqrt{6}}\right)\left(\sqrt{6}+11\right)\)
\(B=\left[\dfrac{15\left(\sqrt{6}-1\right)}{\left(\sqrt{6}+1\right)\left(\sqrt{6}-1\right)}+\dfrac{4\left(\sqrt{6}+2\right)}{\left(\sqrt{6}-2\right)\left(\sqrt{6}+2\right)}-\dfrac{12\left(3+\sqrt{6}\right)}{\left(3+\sqrt{6}\right)\left(3-\sqrt{6}\right)}\right]\left(\sqrt{6}+11\right)\)
\(B=\left[\dfrac{15\left(\sqrt{6}-1\right)}{5}+\dfrac{4\left(\sqrt{6}+2\right)}{2}-\dfrac{12\left(3+\sqrt{6}\right)}{3}\right]\left(\sqrt{6}+11\right)\)
\(B=\left(3\sqrt{6}-3+2\sqrt{6}+4-12-4\sqrt{6}\right)\left(\sqrt{6}+11\right)\)
\(B=\left(\sqrt{6}-11\right)\left(\sqrt{6}+11\right)\)
\(B=6-121\)
\(B=-115\)
Lời giải:
a. $=|3+\sqrt{2}|-|3-2\sqrt{2}|=(3+\sqrt{2})-(3-2\sqrt{2})$
$=3\sqrt{2}$
b. $=|\sqrt{7}-2\sqrt{2}|-|\sqrt{7}+2\sqrt{2}|$
$=(2\sqrt{2}-\sqrt{7})-(\sqrt{7}+2\sqrt{2})$
$=-2\sqrt{7}$
c.
$=|3+\sqrt{5}|+|3-\sqrt{5}|=(3+\sqrt{5})+(3-\sqrt{5})=6$
d.
$=|2-\sqrt{3}|-|2+\sqrt{3}|=(2-\sqrt{3})-(2+\sqrt{3})=-2\sqrt{3}$
\(B=\left(3-\sqrt{5}\right)\sqrt{3+\sqrt{5}}+\left(3+\sqrt{5}\right)\sqrt{3-\sqrt{5}}\)
\(\Leftrightarrow\sqrt{2B}=\left(3-\sqrt{5}\right)\sqrt{2}.\sqrt{3+\sqrt{5}}+\left(3+\sqrt{5}\right)\sqrt{2}.\sqrt{3-\sqrt{5}}\)
\(\Leftrightarrow\sqrt{2B}=\left(3-\sqrt{5}\right)\sqrt{2}.\sqrt{3+\sqrt{5}}+\left(3+\sqrt{5}\right)\sqrt{6-2\sqrt{5}}\)
\(\Leftrightarrow\sqrt{2B}=\left(3-\sqrt{5}\right)\sqrt{\left(\sqrt{5}+1\right)^2}+\left(3+\sqrt{5}\right)\sqrt{\left(\sqrt{5}-1^2\right)}\)
\(\Leftrightarrow\sqrt{2B}=\left(3-\sqrt{5}\right)\left(\sqrt{5}+1\right)+\left(3+\sqrt{5}\right)\left|\sqrt{5}-1\right|\)
\(=3\sqrt{5}+3-5-\sqrt{5}+\left(3+\sqrt{5}\right)\left(\sqrt{5}-1\right)\)
\(=3\sqrt{5}+3-5-\sqrt{5}+3\sqrt{5}-3+5-\sqrt{5}\)
\(=6\sqrt{5}-2\sqrt{5}=4\sqrt{5}\)
\(\Rightarrow B=\frac{4\sqrt{5}}{\sqrt{2}}=2\sqrt{10}\)
Đặt \(\sqrt{3+\sqrt{5}}=a>0;\sqrt{3-\sqrt{5}}=b>0\Rightarrow ab=\sqrt{\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)}=\sqrt{3^2-5}=2\)
Và \(a^2+b^2=6 \Rightarrow\left(a+b\right)^2=a^2+b^2+2ab=6+4=10\Rightarrow a+b=\sqrt{10}\) (vì a + b > 0 do a > 0,b>0)
\(B=b^2\cdot a+a^2\cdot b=ab\left(a+b\right)=2\sqrt{10}\)