Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\frac{\sqrt{3}+\sqrt{2}-1}{2+\sqrt{6}}+\frac{\sqrt{2}-\sqrt{3}}{\sqrt{2}+1}\left(\frac{2\sqrt{3}+\sqrt{18}+2\sqrt{3}-\sqrt{18}}{4-6}\right)-\frac{1}{\sqrt{2}}.\)
\(=\frac{\sqrt{3}+\sqrt{2}-1}{2+\sqrt{6}}-\frac{\sqrt{2}-\sqrt{3}}{\sqrt{2}+1}.\left(2\sqrt{3}\right)-\frac{1}{\sqrt{2}}\)
\(=\frac{\sqrt{3}+\sqrt{2}-1}{2+\sqrt{6}}-\frac{2\sqrt{6}-6}{\sqrt{2}+1}-\frac{1}{\sqrt{2}}\)
B=\(\frac{6-6\sqrt{3}}{1-\sqrt{3}}+\frac{3\sqrt{3}+3}{\sqrt{3}+1}=\frac{6\left(1-\sqrt{3}\right)}{1-\sqrt{3}}+\frac{3\left(\sqrt{3}+1\right)}{\sqrt{3}+1}=6+3=9\)
C=\(\frac{3+\sqrt{3}}{\sqrt{3}}+\frac{\sqrt{6}-\sqrt{3}}{1-\sqrt{2}}=\frac{3\left(1+\sqrt{3}\right)}{\sqrt{3}}+\frac{\sqrt{3}\left(\sqrt{2}-1\right)}{1-\sqrt{2}}=\sqrt{3}+1-\sqrt{3}=1\)
D=\(\frac{\sqrt{10}-\sqrt{2}}{\sqrt{5}-1}+\frac{2-\sqrt{2}}{\sqrt{2}-1}=\frac{\sqrt{2}\left(\sqrt{5}-1\right)}{\sqrt{5}-1}+\frac{\sqrt{2}\left(\sqrt{2}-1\right)}{\sqrt{2}-1}=\sqrt{2}+\sqrt{2}=2\sqrt{2}\)
E=\(\frac{\sqrt{15}-\sqrt{12}}{\sqrt{5}-2}+\frac{1}{2-\sqrt{3}}=\frac{\sqrt{3}\left(\sqrt{5}-2\right)}{\sqrt{5}-2}+\frac{1}{2-\sqrt{3}}=\sqrt{3}+\frac{1}{2-\sqrt{3}}=\frac{2\sqrt{3}-1}{2-\sqrt{3}}\)
\(\frac{\sqrt{2+\sqrt{3}}}{2}:\left(\frac{\sqrt{2+\sqrt{3}}}{2}-\frac{2}{\sqrt{6}}+\frac{\sqrt{2+\sqrt{3}}}{2\sqrt{3}}\right)\)
\(=\frac{\sqrt{2+\sqrt{3}}}{2}:\left(\frac{\sqrt{6\left(2+\sqrt{3}\right)}-4+\sqrt{2\left(2+\sqrt{3}\right)}}{2\sqrt{6}}\right)\)
\(=\frac{\sqrt{2+\sqrt{3}}}{2}.\left(\frac{2\sqrt{6}}{\sqrt{12+6\sqrt{3}}-4+\sqrt{4+2\sqrt{3}}}\right)\)
\(=\frac{\sqrt{6\left(2+\sqrt{3}\right)}}{\left|\sqrt{3}+3\right|-4+\left|\sqrt{3}+1\right|}\)
\(=\frac{\left|\sqrt{3}+3\right|}{\sqrt{3}+3-4+\sqrt{3}+1}\)
\(=\frac{\sqrt{3}+3}{2\sqrt{3}}\)
\(\frac{\sqrt{3}+\sqrt{11+6\sqrt{2}}-\sqrt{5+2\sqrt{6}}}{\sqrt{2}+\sqrt{6+2\sqrt{5}}-\sqrt{7-2\sqrt{10}}}\)
\(=\frac{\sqrt{3}+\sqrt{\left(\sqrt{2}\right)^2+6\sqrt{2}+9}-\sqrt{\left(\sqrt{2}\right)^2+2\sqrt{6}+\left(\sqrt{3}\right)^2}}{\sqrt{2}+\sqrt{\left(\sqrt{5}\right)^2+2\sqrt{5}+1}-\sqrt{\left(\sqrt{5}\right)^2-2\sqrt{10}+\left(\sqrt{2}\right)^2}}\)
\(=\frac{\sqrt{3}+\sqrt{\left(\sqrt{2}+3\right)^2}-\sqrt{\left(\sqrt{2}+\sqrt{3}\right)^2}}{\sqrt{2}+\sqrt{\left(\sqrt{5}+1\right)^2}-\sqrt{\left(\sqrt{5}-\sqrt{2}\right)^2}}\)
\(=\frac{\sqrt{3}+\sqrt{2}+3-\sqrt{2}-\sqrt{3}}{\sqrt{2}+\sqrt{5}+1-\sqrt{5}+\sqrt{2}}\)
\(=\frac{3}{2\sqrt{2}+1}\)
được bạn ạ mình nhờ thầy giải ra mà bạn tính máy tính mới ko ra thôi
1) \(\frac{6-6\sqrt{3}}{1-\sqrt{3}}+\frac{3\sqrt{3}+3}{\sqrt{3}+1}\)
= \(\frac{6\left(1-\sqrt{3}\right)}{1-\sqrt{3}}+\frac{3\left(\sqrt{3}+1\right)}{\sqrt{3}+1}\)
= 6+3
=9
2) \(\frac{\sqrt{6}-\sqrt{3}}{1-\sqrt{2}}+\frac{3+\sqrt{3}}{\sqrt{3}}\)
= \(\frac{-\sqrt{3}\left(1-\sqrt{2}\right)}{1-\sqrt{2}}+\frac{\sqrt{3}\left(\sqrt{3}+1\right)}{\sqrt{3}}\)
= \(-\sqrt{3}+\sqrt{3}+1\)
=1
3)\(\frac{2-\sqrt{2}}{1-\sqrt{2}}+\frac{\sqrt{2}-\sqrt{6}}{\sqrt{3}-1}\)
= \(\frac{-\sqrt{2}\left(1-\sqrt{2}\right)}{1-\sqrt{2}}-\frac{\sqrt{2}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}\)
= \(-2\sqrt{2}\)
Bài rút gọn
\(\sqrt{\left(x-1\right)^2}-x=\left|x-1\right|-x\)
\(=\left(x-1\right)-x=x-1-x=-1\left(x>1\right)\)
Bài gpt:
\(\sqrt{x^2-3x+2}+\sqrt{x^2-4x+3}=0\)
Đk:\(-1\le x\le3\)
\(pt\Leftrightarrow\sqrt{\left(x-1\right)\left(x-2\right)}+\sqrt{\left(x-1\right)\left(x-3\right)}=0\)
\(\Leftrightarrow\sqrt{x-1}\left(\sqrt{x-2}+\sqrt{x-3}\right)=0\)
Dễ thấy:\(\sqrt{x-2}+\sqrt{x-3}=0\) vô nghiệm
Nên \(\sqrt{x-1}=0\Rightarrow x-1=0\Rightarrow x=1\)
*****~~~~~~~~~~*****
\(\frac{\sqrt{15}-\sqrt{12}}{\sqrt{5}-2}+\frac{6+\sqrt{6}}{\sqrt{6}+1}\)
\(=\frac{\sqrt{3}\left(\sqrt{5}-2\right)}{\sqrt{5}-2}+\frac{\sqrt{6}\left(\sqrt{6}+1\right)}{\sqrt{6}+1}\)
\(=\sqrt{3}+\sqrt{6}\)
\(=\sqrt{3}\left(1+\sqrt{2}\right)\)
*****~~~~~~~~~~*****
\(\frac{3+2\sqrt{3}}{\sqrt{3}}+\frac{2+\sqrt{2}}{\sqrt{2}+1}\)
\(=\frac{\sqrt{3}\left(\sqrt{3}+2\right)}{\sqrt{3}}+\frac{\sqrt{2}\left(\sqrt{2}+1\right)}{\sqrt{2}+1}\)
\(=\sqrt{3}+2+\sqrt{2}\)
(Chúc bạn học tốt nha!)
Trả lời:
B = 1
Cre : Bấm máy là ra ấy mà