Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=2x^3+3x^2-3-5x^2-5x=2x^3-2x^2-5x-3\\ B=125-150x+60x^2-8x^3-25+9x^2=-8x^3+69x^2-150x+100\\ C=\left(3x+1-2x+1\right)\left(3x+1+2x-1\right)=5x\left(x+2\right)=5x^2+10x\\ D=\left(2x+1-3+x\right)^2=\left(3x-2\right)^2=9x^2-12x+4\\ E=x^3-6x^2+12x-8-x^3+x+6x^2-18x=-5x-8\\ F=x^3-3x^2+3x-1-3+3x^2-x^3+1-3x=-3\)
\(A=\left(x+2\right)^2-\left(x+3\right)\left(x-1\right)+15\)
\(A=x^2+4x+4-\left(x^2-x+3x-3\right)+15\)
\(A=\left(x^2-x^2\right)+\left(4x+x-3x\right)+\left(15+3+4\right)\)
\(A=2x+22\)
______________________
\(B=\left(x+1\right)\left(x-1\right)-\left(x+4\right)^2-6\)
\(B=\left(x^2-1\right)-\left(x^2+8x+16\right)-6\)
\(B=\left(x^2-x^2\right)-8x-\left(1+16+6\right)\)
\(B=-8x-23\)
_________________
\(C=\left(3x+2\right)\left(3x-2\right)-\left(3x-1\right)^2\)
\(C=\left[\left(3x\right)^2-2^2\right]-\left(9x^2-6x+1\right)\)
\(C=\left(9x^2-9x^2\right)+6x-\left(4+1\right)\)
\(C=6x-5\)
a) Rút gọn biểu thức A = (x + 2)2 - (x + 3)(x - 1) + 15:
Bắt đầu bằng việc mở ngoặc:
A = (x^2 + 4x + 4) - (x^2 + 2x - 3x - 3) + 15
Tiếp theo, kết hợp các thành phần tương tự:
A = x^2 + 4x + 4 - x^2 - 2x + 3x + 3 + 15
Tiếp tục đơn giản hóa:
A = x^2 - x^2 + 4x - 2x + 3x + 4 + 3 + 15
Kết quả cuối cùng:
A = 5x + 19
b) Rút gọn biểu thức B = (x - 1)(x + 1) - (x + 4)2 - 6:
Bắt đầu bằng việc mở ngoặc:
B = (x^2 - 1) - (x^2 + 4x + 4) - 6
Tiếp theo, kết hợp các thành phần tương tự:
B = x^2 - 1 - x^2 - 4x - 4 - 6
Tiếp tục đơn giản hóa:
B = x^2 - x^2 - 4x - 4 - 6 - 1
Kết quả cuối cùng:
B = -4x - 11
c) Rút gọn biểu thức C = (3x - 2)(3x + 2) - (3x - 1)2:
Bắt đầu bằng việc mở ngoặc:
C = (9x^2 - 4) - (9x^2 - 6x + 1)
Tiếp theo, kết hợp các thành phần tương tự:
C = 9x^2 - 4 - 9x^2 + 6x - 1
Tiếp tục đơn giản hóa:
C = 9x^2 - 9x^2 + 6x - 4 - 1
Kết quả cuối cùng:
C = 6x - 5
a: Ta có: \(\left(x+1\right)^2+\left(x-1\right)^2-2\left(1+x\right)\left(1-x\right)\)
\(=\left(x+1\right)^2+2\left(x+1\right)\left(x-1\right)+\left(x-1\right)^2\)
\(=\left(x+1+x-1\right)^2\)
\(=4x^2\)
c: Ta có: \(3\left(x+2\right)^2-\left(3x+1\right)\left(x+5\right)+\left(x+5\right)^2\)
\(=3x^2+12x+12-3x^2-16x-5+x^2+10x+25\)
\(=x^2+6x+32\)
\(a,=x^2-4-x^2+2x+3=2x-1\\ b,=x^3+3x^2-5x-15+x^2-x^3+4x-4x^2=-x-15\\ c,=2x^2+3x-10x-15-2x^2+6x+x+7=-8\\ d,=\left(2x+1+3x-1\right)^2=25x^2\)
a) (3x + 1)^2 - 2(3x + 1)(3x - 5) + (3x - 5)^2
= 9x^2 + 6x + 1 - 18x^2 + 24x + 10 + 9x^2 - 30x + 25
= 36
b) (3x^2 - y)^2
= 9x^4 - 6x^2y + y^2
c) (3x + 5)^2 + (3x - 5)^2 - (3x + 2)(3x - 2)
= 9x^2 + 30x + 25 + 9x^2 - 30x + 25 - 9x^2 + 4
= 9x^2 + 54
d) 2x(2x - 1)^2 - 3x(x + 3)(x - 3) - 4x(x + 1)^2
= 8x^3 - 8x^2 + 2x - 3x^2 + 27x - 4x^3 - 8x^2 - 4x
= x^3 - 16x^2 + 25x
e) (x - 2)(x^2 + 2x + 4) - (x + 1)^2 + 3(x - 1)(x + 1)
= x^3 - 8 - x^2 - 2x - 1 + 3x^2 - 2
= x^3 + 2x^2 - 2x - 12
f) (x^4 - 5x^2 + 25)(x^2 + 5) - (2 + x^2)^2 + 3(1 + x^2)^2
= x^6 + 125 - 4 - 4x^2 - x^2 + 3 + 6x^2 + 3x^4
= x^6 + 2x^4 + 2x^2 + 124
a) Ta có: \(\dfrac{2x^2-2x}{x-1}\)
\(=\dfrac{2x\left(x-1\right)}{x-1}\)
=2x
b) Ta có: \(\dfrac{x^2+2x+1}{3x^2+3x}\)
\(=\dfrac{\left(x+1\right)^2}{3x\left(x+1\right)}\)
\(=\dfrac{x+1}{3x}\)
c) Ta có: \(\dfrac{x}{3x-3}+\dfrac{1}{x^2-1}\)
\(=\dfrac{x}{3\left(x-1\right)}+\dfrac{1}{\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{x+1+3}{3\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{x+4}{3x^2-3}\)
Bài 1:
a) \(4x\left(3x-1\right)-2\left(3x+1\right)-\left(x+3\right)\)
\(=12x^2-4x-6x-2-x-3\)
\(=12x^2-11x-5\)
b) \(=\left(-2x^2-1xy+2y^2\right)\left(-1x^2y\right)\)
\(=\left[\left(-1x^2y\right)\left(-2x^2\right)\right]-\left[\left(-1x^2y\right).1xy\right]+\left[\left(-1x^2y\right).2y^2\right]\)
\(=\left(2x^4y\right)-\left(-1x^3y^2\right)+\left(-2x^2y^3\right)\)
\(=2x^4y+1x^3y^2-2x^2y^3\)
c) \(4x\left(3x^2-x\right)-\left(2x+3\right)^2\left(6x^2-3x+1\right)\)
\(=\left(4x.3x^2\right)-\left(4x.x\right)-\left[\left(2x\right)^2+2.2x.3+3^2\right]\left(6x^2-3x+1\right)\)
\(=12x^3-4x^2-\left(4x^2+12x+9\right)\left(6x^2-3x+1\right)\)
\(=12x^3-4x^2-\left[4x^2\left(6x^2-3x+1\right)+12x\left(6x^2-3x+1\right)+9\left(6x^2-3x+1\right)\right]\)
\(=12x^3-4x^2-\left[\left(24x^4-12x^3+4x^2\right)+\left(72x^3-36x^2+12x\right)+\left(36x^2-27x+9\right)\right]\)
\(=12x^3-4x^2-24x^4+12x^3-4x^2-72x^3+36x^2-12x-36x^2+27x-9\)
\(=-48x^3-8x^2-24x^4+15x-9\)
a: Ta có: \(\left(x-2\right)^2-\left(2x-1\right)^2+\left(3x-1\right)\left(x-5\right)\)
\(=x^2-4x+4-4x^2+4x-1+3x^2-15x-x+5\)
\(=-16x+8\)
b: Ta có: \(\left(x-3\right)^3-\left(x+3\right)\left(x^2-3x+9\right)+\left(3x-1\right)\left(3x+1\right)\)
\(=x^3-9x^2+27x-27-x^3-27+9x^2-1\)
=27x-55
a: Ta có: \(\left(x^2-2x+2\right)\left(x^2-2\right)\left(x^2+2x+2\right)\left(x^2+2\right)\)
\(=\left(x^4-4\right)\left[\left(x^2+2\right)^2-4x^2\right]\)
\(=\left(x^4-4\right)\left(x^4+4x^2+4-4x^2\right)\)
\(=\left(x^4-4\right)\cdot\left(x^4+4\right)\)
\(=x^8-16\)
b: Ta có: \(\left(x+1\right)^2-\left(x-1\right)^2+3x^2-3x\left(x+1\right)\left(x-1\right)\)
\(=x^2+2x+1-x^2+2x-1+3x^2-3x\left(x^2-1\right)\)
\(=3x^2+4x-3x^3+3x\)
\(=-3x^3+3x^2+7x\)