
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a. \(=4x^2-4xy+y^2+4x^2-4xy+y^2=8x^2+2y^2\)
\(=8.\left(\frac{1}{21}\right)^2+4.\left(-0.3\right)^2=\frac{4169}{11025}\)
b, \(=\left(\frac{1}{7}xy+7yz+\frac{1}{7}xy-7yz\right)\left(\frac{1}{7}xy+7yz-\frac{1}{7}xy+7yz\right)\)
\(=\frac{2}{7}xy.14yz=4xy^2z=4.2.\left(0,25\right)^2.\left(-4\right)=-2\)

a. 2x^2 ( 5x^3 - 4x^2 - 7xy + 1 )
= 10x^5 - 8x^4 - 14x^3y + 1
b. ( x - 5 ) ( x + 3 )
= x^2 + 3x - 5x - 15
= x^2 - 2x - 15
c. ( x - 1 ) ( x + 2 )
= x^2 + 2x - x - 2
= x^2 - x - 2
d. ( 2x + y ) ( 2x - y )
= 4x^2 - 2xy + 2xy - y^2
= 4x^2 - y^2
a) \(2x^2\left(5x^3-4x^2.g-7xy+1\right)\)
\(=10x^5-8x^4.g-14x^3y+2x^2\)
b) \(\left(x-5\right)\left(x+3\right)\)
\(=x^2+3x-5x-15\)
\(=x^2-2x-15\)
c) \(\left(x-1\right)\left(x+2\right)\)
\(=x^2+2x-x-2\)
\(=x^2+x-2\)
d) \(\left(2x+y\right)\left(2x-y\right)\)
\(=4x^2-y^2\)

Bài 1:
a: ĐKXĐ: \(x+4\ne0\)
=>\(x\ne-4\)
b: ĐKXĐ: \(2x-1\ne0\)
=>\(2x\ne1\)
=>\(x\ne\dfrac{1}{2}\)
c: ĐKXĐ: \(x\left(y-3\right)\ne0\)
=>\(\left\{{}\begin{matrix}x\ne0\\y-3\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne0\\y\ne3\end{matrix}\right.\)
d: ĐKXĐ: \(x^2-4y^2\ne0\)
=>\(\left(x-2y\right)\left(x+2y\right)\ne0\)
=>\(x\ne\pm2y\)
e: ĐKXĐ: \(\left(5-x\right)\left(y+2\right)\ne0\)
=>\(\left\{{}\begin{matrix}x\ne5\\y\ne-2\end{matrix}\right.\)
Bài 2:
a: \(\dfrac{-12x^3y^2}{-20x^2y^2}=\dfrac{12x^3y^2}{20x^2y^2}=\dfrac{12x^3y^2:4x^2y^2}{20x^2y^2:4x^2y^2}=\dfrac{3x}{5}\)
b: \(\dfrac{x^2+xy-x-y}{x^2-xy-x+y}\)
\(=\dfrac{\left(x^2+xy\right)-\left(x+y\right)}{\left(x^2-xy\right)-\left(x-y\right)}\)
\(=\dfrac{x\left(x+y\right)-\left(x+y\right)}{x\left(x-y\right)-\left(x-y\right)}=\dfrac{\left(x+y\right)\left(x-1\right)}{\left(x-y\right)\left(x-1\right)}\)
\(=\dfrac{x+y}{x-y}\)
c: \(\dfrac{7x^2-7xy}{y^2-x^2}\)
\(=\dfrac{7x\left(x-y\right)}{\left(y-x\right)\left(y+x\right)}\)
\(=\dfrac{-7x\left(x-y\right)}{\left(x-y\right)\left(x+y\right)}=\dfrac{-7x}{x+y}\)
d: \(\dfrac{7x^2+14x+7}{3x^2+3x}\)
\(=\dfrac{7\left(x^2+2x+1\right)}{3x\left(x+1\right)}\)
\(=\dfrac{7\left(x+1\right)^2}{3x\left(x+1\right)}=\dfrac{7\left(x+1\right)}{3x}\)
e: \(\dfrac{3y-2-3xy+2x}{1-3x-x^3+3x^2}\)
\(=\dfrac{3y-2-x\left(3y-2\right)}{1-3x+3x^2-x^3}\)
\(=\dfrac{\left(3y-2\right)\left(1-x\right)}{\left(1-x\right)^3}=\dfrac{3y-2}{\left(1-x\right)^2}\)
g: \(\dfrac{x^2+7x+12}{x^2+5x+6}\)
\(=\dfrac{\left(x+3\right)\left(x+4\right)}{\left(x+3\right)\left(x+2\right)}\)
\(=\dfrac{x+4}{x+2}\)

a) ( -5x2 +3xy + 7) + ( -6x2y + 4xy2 - 5)=4*x*y^2-6*x^2*y+3*a*x*y-5*a*x^2+7*a-5
b) ( 2,4x3 - 10x2y) + (7x2y - 2,4x3 + 3xy2)=3*x*y^2-3*x^2*y
c) ( 15x2y - 7xy2 - 6y2) + (2x2 - 12x2y + 7xy2)=-6*y^2+3*x^2*y+2*x^2
d) ( 4x2 + x2y - 5y3) + (5/3 x3 - 6xy2 - x2y) + (x3/3 + 10y3) + ( 6y3-15xy2 - 4x2y - 10x3)=11*y^3-21*x*y^2-4*x^2*y-8*x^3+4*x^2

a,sửa đề : \(\left(\frac{1}{x^2+4x+4}-\frac{1}{x^2-4x+4}\right):\left(\frac{1}{x+2}+\frac{1}{x^2-4}\right)\)
\(=\left(\frac{1}{\left(x+2\right)^2}-\frac{1}{\left(x-2\right)^2}\right):\left(\frac{x-2+1}{\left(x+2\right)\left(x-2\right)}\right)\)
\(=\left(\frac{x^2-4x+4-x^2-4x-4}{\left(x+2\right)^2\left(x-2\right)^2}\right):\left(\frac{x-1}{\left(x+2\right)\left(x-2\right)}\right)\)
\(=\frac{-8x\left(x+2\right)\left(x-2\right)}{\left(x+2\right)^2\left(x-2\right)^2\left(x-1\right)}=\frac{-8x}{\left(x-1\right)\left(x^2-4\right)}\)
b, \(\left(\frac{2x}{2x-y}-\frac{4x^2}{4x^2+4xy+y^2}\right):\left(\frac{2x}{4x^2-y^2}+\frac{1}{y-2x}\right)\)
\(=\left(\frac{2x}{2x-y}-\frac{4x^2}{\left(2x+y\right)^2}\right):\left(\frac{2x}{\left(2x-y\right)\left(2x+y\right)}-\frac{1}{2x-y}\right)\)
\(=\left(\frac{2x\left(2x+y\right)^2-4x^2\left(2x-y\right)}{\left(2x-y\right)\left(2x+y\right)^2}\right):\left(\frac{2x-\left(2x+y\right)}{\left(2x-y\right)\left(2x+y\right)}\right)\)
\(=\left(\frac{8x^3+8x^2y+2xy^2-8x^3+4x^2y}{\left(2x-y\right)\left(2x+y\right)^2}\right):\left(\frac{-y}{\left(2x-y\right)\left(2x+y\right)}\right)\)
\(=-\left(\frac{12x^2y+xy^2}{2x+y}\right)=\frac{-12x^2y-xy^2}{2x+y}\)

a) \(Q = 5{x^2} - 7xy + 2,5{y^2} + 2x - 8,3y + 1\) có bậc là 2.
b)
\(\begin{array}{l}H = 4{x^5} - \dfrac{1}{2}{x^3}y + \dfrac{3}{4}{x^2}{y^2} - 4{x^5} + 2{y^2} - 7\\ = \left( {4{x^5} - 4{x^5}} \right) - \dfrac{1}{2}{x^3}y + \dfrac{3}{4}{x^2}{y^2} + 2{y^2} - 7\\ = - \dfrac{1}{2}{x^3}y + \dfrac{3}{4}{x^2}{y^2} + 2{y^2} - 7\end{array}\)
Đa thức H có bậc là 4.

a/\(\left(2x-1\right)^2-2\left(2x-3\right)^2+4\)
\(=4x^2-4x+1-2\left(4x^2-12x+9\right)+4\)
\(=4x^2-4x+1-8x^2+24x-18+4\)
\(=-4x^2+20x-13\)
b/ \(2\left(x-y\right)\left(x+y\right)+\left(x+y\right)^2+\left(x-y\right)^2\)
\(=2\left(x^2-y^2\right)+x^2+2xy+y^2+x^2-2xy+y^2\)
\(=2x^2-2y^2+2x^2+2y^2\)
\(=4x^2\)
chúc bạn học tốt

Rút gọn
a) Ta có: \(2x^2\left(5x^3-4x^2y-7xy+1\right)\)
\(=10x^5-8x^4y-14x^3y+2x^2\)
b) Ta có: \(2x\left(3x^3-x\right)-4x^2\left(x-x^2+1\right)+\left(x-3x^2\right)\cdot x\)
\(=6x^4-2x^2-4x^3+4x^4-4x^2+x^2-3x^3\)
\(=10x^4-7x^3-5x^2\)