Rút gọn biểu thức x 2 +...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1. Cho biểu thức A = \(\left(\frac{x-\sqrt{x}}{\sqrt{x}-1}+1\right):\left(\frac{x+2\sqrt{x}}{\sqrt{x}+2}-1\right)\)a) Rút gọn biểu thức Ab) Tính giá trị của A khi x=9c) Tìm x để A=5d) Tìm x để A<1e) Tìm giá trị nguyên của x để A nhận giá trị nguyên2. Cho hai biểu thức P = \(\frac{\sqrt{x}+1}{\sqrt{x}-1}\) và A = \(\left(\frac{x-2}{x+2\sqrt{x}}+\frac{1}{\sqrt{x}+2}\right).\frac{\sqrt{x}+1}{\sqrt{x}-1}\)a) Tính giá trị biểu thức P khi x...
Đọc tiếp

1. Cho biểu thức A = \(\left(\frac{x-\sqrt{x}}{\sqrt{x}-1}+1\right):\left(\frac{x+2\sqrt{x}}{\sqrt{x}+2}-1\right)\)

a) Rút gọn biểu thức A

b) Tính giá trị của A khi x=9

c) Tìm x để A=5

d) Tìm x để A<1

e) Tìm giá trị nguyên của x để A nhận giá trị nguyên

2. Cho hai biểu thức P = \(\frac{\sqrt{x}+1}{\sqrt{x}-1}\) và A = \(\left(\frac{x-2}{x+2\sqrt{x}}+\frac{1}{\sqrt{x}+2}\right).\frac{\sqrt{x}+1}{\sqrt{x}-1}\)

a) Tính giá trị biểu thức P khi x = \(\frac{1}{4}\)

b) Rút gọn biểu thức A

c) So sánh giá trị biểu thức A với 1

d) Tìm giá trị của x để \(\frac{P}{A}\left(x-1\right)=0\)

 

1. Cho biểu thức A = \(\left(\frac{x-\sqrt{x}}{\sqrt{x}-1}+1\right):\left(\frac{x+2\sqrt{x}}{\sqrt{x}+2}-1\right)\)

a) Rút gọn biểu thức A

b) Tính giá trị của A khi x=9

c) Tìm x để A=5

d) Tìm x để A<1

e) Tìm giá trị nguyên của x để A nhận giá trị nguyên

2. Cho hai biểu thức P = \(\frac{\sqrt{x}+1}{\sqrt{x}-1}\) và A = \(\left(\frac{x-2}{x+2\sqrt{x}}+\frac{1}{\sqrt{x}+2}\right).\frac{\sqrt{x}+1}{\sqrt{x}-1}\)

a) Tính giá trị biểu thức P khi x = \(\frac{1}{4}\)

b) Rút gọn biểu thức A

c) So sánh giá trị biểu thức A với 1

d) Tìm giá trị của x để \(\frac{P}{A}\left(x-1\right)=0\)

 

 

0
18 tháng 8 2020

/x-25 và /x-2 đấy ạ,máy em bị đánh lỗi. :((

18 tháng 8 2020

\(5\sqrt{x}-\frac{\left(x+10\sqrt{x}+25\right)\left(\sqrt{x}-5\right)}{x-25}=5\sqrt{x}-\frac{\left(\sqrt{x}+5\right)^2\left(\sqrt{x}-5\right)}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}\)

\(=5\sqrt{x}-\left(\sqrt{x}+5\right)=4\sqrt{x}-5\)

\(\frac{\sqrt{x^2-4x+4}}{x-2}=\frac{\sqrt{\left(x-2\right)^2}}{x-2}=\frac{\left|x-2\right|}{x-2}=\orbr{\begin{cases}\frac{x-2}{x-2}\left(x>2\right)\\\frac{2-x}{x-2}\left(x< 2\right)\end{cases}=\orbr{\begin{cases}1\left(x>2\right)\\-1\left(x< 2\right)\end{cases}}}\)

27 tháng 8 2020

Bài làm:

a) Tại x = 2 thì giá trị của B là:

\(B=-\frac{10}{2-4}=\frac{-10}{-2}=5\)

b) Ta có:

\(A=\frac{x+2}{x+5}+\frac{-5x-1}{x^2+6x+5}-\frac{1}{1+x}\)

\(A=\frac{x+2}{x+5}-\frac{5x+1}{\left(x+1\right)\left(x+5\right)}-\frac{1}{x+1}\)

\(A=\frac{\left(x+2\right)\left(x+1\right)-5x-1-\left(x+5\right)}{\left(x+1\right)\left(x+5\right)}\)

\(A=\frac{x^2+3x+2-5x-1-x-5}{\left(x+1\right)\left(x+5\right)}\)

\(A=\frac{x^2-3x-4}{\left(x+1\right)\left(x+5\right)}\)

\(A=\frac{\left(x+1\right)\left(x-4\right)}{\left(x+1\right)\left(x+5\right)}\)

\(A=\frac{x-4}{x+5}\)

c) Ta có: \(P=A.B=\frac{x-4}{x+5}\cdot\frac{-10}{x-4}=\frac{-10}{x+5}\)

Để \(-\frac{10}{x+5}\inℤ\Rightarrow\left(x+5\right)\inƯ\left(-10\right)=\left\{\pm1;\pm2;\pm5;\pm10\right\}\)

=> \(x\in\left\{-15;-10;-7;-6;-4;-3;0;5\right\}\)

27 tháng 8 2020

a) \(B=\frac{-10}{x-4}\)( ĐKXĐ : \(x\ne4\))

Tại x = 2 ( tmđk ) thì \(B=\frac{-10}{2-4}=\frac{-10}{-2}=5\)

b) \(A=\frac{x+2}{x+5}+\frac{-5x-1}{x^2+6x+5}-\frac{1}{1+x}\)

ĐKXĐ : \(x\ne-5,x\ne-1\)

\(A=\frac{x+2}{x+5}-\frac{5x+1}{\left(x+1\right)\left(x+5\right)}-\frac{1}{x+1}\)

\(A=\frac{\left(x+2\right)\left(x+1\right)}{\left(x+1\right)\left(x+5\right)}-\frac{5x+1}{\left(x+1\right)\left(x+5\right)}-\frac{1\left(x+5\right)}{\left(x+1\right)\left(x+5\right)}\)

\(A=\frac{x^2+3x+2-5x-1-x-5}{\left(x+1\right)\left(x+5\right)}\)

\(A=\frac{x^2-3x-4}{\left(x+1\right)\left(x+5\right)}\)

\(A=\frac{\left(x+1\right)\left(x-4\right)}{\left(x+1\right)\left(x+5\right)}=\frac{x-4}{x+5}\)

c) \(P=A\cdot B=\frac{x-4}{x+5}\cdot\frac{-10}{x-4}=\frac{-10}{x+5}\)( ĐKXĐ : \(x\ne-5\))

Để P nguyên => \(\frac{-10}{x+5}\)nguyên

=> -10 chia hết cho x + 5

=> x + 5 thuộc Ư(-10) = { ±1 ; ±2 ; ±5 ; ±10 }

x+51-12-25-510-10
x-4-6-3-70-105-15

Các giá trị của x đều tmđk

Vậy x = { -4 ; -6 ; -3 ; -7 ; 0 ; -10 ; 5 ; -15 }

24 tháng 11 2018

Sửa đề chút nhé

Đk: x khác 25, x lớn bằng 0

\(A=\frac{\sqrt{x}}{\sqrt{x}-5}-\frac{10\sqrt{x}}{x-25}-\frac{5}{\sqrt{x}+5}=\frac{\sqrt{x}\left(\sqrt{x}+5\right)}{x-25}-\frac{10\sqrt{x}}{x-25}-\frac{5\left(\sqrt{x}-5\right)}{x-25}\)

=\(\frac{x-10\sqrt{x}+25}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}=\frac{\left(\sqrt{x}-5\right)^2}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}=\frac{\sqrt{x}-5}{\sqrt{x}+5}\)

b) Em tự làm 

c) với đk trên

 \(\frac{\sqrt{x}-5}{\sqrt{x}+5}< \frac{1}{3}\Leftrightarrow3\sqrt{x}-15< \sqrt{x}+5\Leftrightarrow2\sqrt{x}< 20\Leftrightarrow x< 100\)

Vậy  \(0\le x\le100,x\ne25\)

24 tháng 11 2018

thank c nha

16 tháng 7 2019

\(A=4\sqrt{x}-\frac{x+6\sqrt{x}+9}{x-9}\)

\(=4\sqrt{x}-\frac{\left(\sqrt{x}+3\right)^2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(=4\sqrt{x}-\frac{\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)}\)

\(=\frac{4\sqrt{x}\left(\sqrt{x}-3\right)}{\sqrt{x}-3}-\frac{\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)}\)

\(=\frac{4x-12\sqrt{x}-\sqrt{x}-3}{\sqrt{x}-3}\)

\(=\frac{4x-13\sqrt{x}-3}{\sqrt{x}-3}\)

C.Tham khảo ở dây:Câu hỏi của Đặng Phương Thảo - Toán lớp 9 - Học toán với OnlineMath

16 tháng 7 2019

\(B=\frac{5\sqrt{x}-\left(x-10\sqrt{x}+25\right)\left(\sqrt{x}+5\right)}{x-25}\)

\(=\frac{5\sqrt{x}-\left(\sqrt{x}-5\right)^2\left(\sqrt{x}+5\right)}{x-25}\)

\(=\frac{5\sqrt{x}-\left(\sqrt{x}-5\right)\left(x-25\right)}{x-25}\)

\(=\frac{5\sqrt{x}-\left(x\sqrt{x}-25\sqrt{x}-5x+125\right)}{x-25}\)

\(=\frac{5\sqrt{x}-x\sqrt{x}+25\sqrt{x}+5x-125}{x-25}\)

\(=\frac{-x\sqrt{x}+30\sqrt{x}+5x-125}{x-25}\)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

a: \(2\sqrt{x^2}=2\left|x\right|=-2x\)

b: \(\sqrt{\left(a-5\right)^4}=\left|\left(a-5\right)^2\right|=\left(a-5\right)^2\)

\(\dfrac{1}{2}\sqrt{x^{10}}=\dfrac{1}{2}\left|x^5\right|=-\dfrac{1}{2}x^5\)

5 tháng 2 2021

học lớp 9 chưa mà đòi đăng ? :))

a) Ta có : \(A=\frac{x+5\sqrt{x}}{x-25}=\frac{\sqrt{x}\left(\sqrt{x}+5\right)}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}=\frac{\sqrt{x}}{\sqrt{x}-5}\)

Để A nhận giá trị = 0 thì \(\sqrt{x}=0\)<=> x = 0 ( tmđk )

Vậy với x = 0 thì A = 0

b) \(B=\frac{2\sqrt{x}}{\sqrt{x}-3}-\frac{x+9\sqrt{x}}{x-9}\)

\(=\frac{2\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-\frac{x+9\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(=\frac{2x+6\sqrt{x}-x-9\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\frac{x-3\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\frac{\sqrt{x}}{\sqrt{x}+3}\)

c) P = B : A = \(\frac{\frac{\sqrt{x}}{\sqrt{x}+3}}{\frac{\sqrt{x}}{\sqrt{x}-5}}=\frac{\sqrt{x}}{\sqrt{x}+3}\div\frac{\sqrt{x}}{\sqrt{x}-5}=\frac{\sqrt{x}}{\sqrt{x}+3}\times\frac{\sqrt{x}-5}{\sqrt{x}}=\frac{\sqrt{x}-5}{\sqrt{x}+3}\)

Xét hiệu P - 1 ta có :

\(\frac{\sqrt{x}-5}{\sqrt{x}+3}-1=\frac{\sqrt{x}-5}{\sqrt{x}+3}-\frac{\sqrt{x}+3}{\sqrt{x}+3}=\frac{\sqrt{x}-5-\sqrt{x}-3}{\sqrt{x}+3}=\frac{-8}{\sqrt{x}+3}\)

Vì \(\hept{\begin{cases}-8< 0\\\sqrt{x}+3>0\end{cases}}\Rightarrow\frac{-8}{\sqrt{x}+3}< 0\)hay P - 1 < 0

=> P < 1 

DD
5 tháng 2 2021

a) \(A=0\Rightarrow\frac{x+5\sqrt{x}}{x-25}=0\Rightarrow x+5\sqrt{x}=0\Leftrightarrow x=0\)(thỏa mãn).

b) \(B=\frac{2\sqrt{x}}{\sqrt{x}-3}-\frac{x+9\sqrt{x}}{x-9}\)

\(B=\frac{2\sqrt{x}}{\sqrt{x}-3}-\frac{x+9\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(B=\frac{2\sqrt{x}\left(\sqrt{x}+3\right)-x-9\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(B=\frac{2x+6\sqrt{x}-x-9\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(B=\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)

\(B=\frac{\sqrt{x}}{\sqrt{x}+3}\)

c) \(P=B\div A=\frac{\sqrt{x}}{\sqrt{x}+3}\div\frac{\sqrt{x}\left(\sqrt{x}+5\right)}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}=\frac{\sqrt{x}}{\sqrt{x}+3}.\frac{\sqrt{x}-5}{\sqrt{x}}=\frac{\sqrt{x}-5}{\sqrt{x}+3}=1-\frac{8}{\sqrt{x}+3}< 1\)

12 tháng 8 2020

a) x = 16 (tm) => A = \(\frac{\sqrt{16}-2}{\sqrt{16}+1}=\frac{4-2}{4+1}=\frac{2}{5}\)

b) B = \(\left(\frac{1}{\sqrt{x}+5}-\frac{x+2\sqrt{x}-5}{25-x}\right):\frac{\sqrt{x}+2}{\sqrt{x}-5}\)

B = \(\frac{\sqrt{x}-5+x+2\sqrt{x}-5}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}\cdot\frac{\sqrt{x}-5}{\sqrt{x}+2}\)

B = \(\frac{x+3\sqrt{x}-10}{\left(\sqrt{x}+5\right)\left(\sqrt{x}+2\right)}\)

B = \(\frac{x+5\sqrt{x}-2\sqrt{x}-10}{\left(\sqrt{x}+5\right)\left(\sqrt{x}+2\right)}\)

B = \(\frac{\left(\sqrt{x}+5\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+5\right)\left(\sqrt{x}+2\right)}=\frac{\sqrt{x}-2}{\sqrt{x}+2}\)

c) P = \(\frac{B}{A}=\frac{\sqrt{x}-2}{\sqrt{x}+2}:\frac{\sqrt{x}-2}{\sqrt{x}+1}=\frac{\sqrt{x}+1}{\sqrt{x}+2}\)

=> \(P\left(\sqrt{x}+2\right)\ge x+6\sqrt{x}-13\)

<=> \(\frac{\sqrt{x}+1}{\sqrt{x}+2}.\left(\sqrt{x}+2\right)-x-6\sqrt{x}+13\ge0\)

<=> \(-x-6\sqrt{x}+13+\sqrt{x}+1\ge0\)

<=> \(-x-5\sqrt{x}+14\ge0\)

<=> \(x+5\sqrt{x}-14\le0\)

<=> \(x+7\sqrt{x}-2\sqrt{x}-14\le0\)

<=> \(\left(\sqrt{x}+7\right)\left(\sqrt{x}-2\right)\le0\)

Do \(\sqrt{x}+7>0\) với mọi x => \(\sqrt{x}-2\le0\)

<=> \(\sqrt{x}\le2\) <=> \(x\le4\)

Kết hợp với Đk: x \(\ge\)0; x \(\ne\)4; x \(\ne\)25

và x thuộc Z => x = {0; 1; 2; 3}

d) M = \(3P\cdot\frac{\sqrt{x}+2}{x+\sqrt{x}+4}\) <=>M = \(3\cdot\frac{\sqrt{x}+1}{\sqrt{x}+2}\cdot\frac{\sqrt{x}+2}{x+\sqrt{x}+4}\)

M = \(\frac{3\sqrt{x}+3}{x+\sqrt{x}+4}=\frac{x+\sqrt{x}+4-x+2\sqrt{x}-1}{\left(x+\sqrt{x}+\frac{1}{4}\right)+\frac{15}{4}}=1-\frac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+\frac{1}{2}\right)^2+\frac{15}{4}}\le1\)(Do \(\left(\sqrt{x}-1\right)^2\ge0\) và \(\left(\sqrt{x}+\frac{1}{2}\right)^2+\frac{15}{4}>0\))

Dấu "=" xảy ra <=> \(\sqrt{x}-1=0\) <=> \(x=1\)

Vậy MaxM = 1 khi x = 1

27 tháng 2 2022

Trả lời:

a, \(A=\frac{\sqrt{x}}{\sqrt{x}-5}-\frac{10\sqrt{x}}{x-25}-\frac{5}{\sqrt{x}+5}\left(ĐK:x\ge0;x\ne25\right)\)

\(=\frac{\sqrt{x}}{\sqrt{x}-5}-\frac{10\sqrt{x}}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}-\frac{5}{\sqrt{x}+5}\)

\(=\frac{\sqrt{x}\left(\sqrt{x}+5\right)}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}-\frac{10\sqrt{x}}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}-\frac{5\left(\sqrt{x}-5\right)}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}\)

\(=\frac{\sqrt{x}\left(\sqrt{x}+5\right)-10\sqrt{x}-5\left(\sqrt{x}-5\right)}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}\)

\(=\frac{x+5\sqrt{x}-10\sqrt{x}-5\sqrt{x}+25}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}\)

\(=\frac{x-10\sqrt{x}+25}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}\)

\(=\frac{\left(\sqrt{x}-5\right)^2}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}=\frac{\sqrt{x}-5}{\sqrt{x}+5}\)

b, Thay x = 9 vào A, ta được:

\(A=\frac{\sqrt{9}-5}{\sqrt{9}+5}=\frac{3-5}{3+5}=\frac{-2}{8}=-\frac{1}{4}\)

c, \(A< \frac{1}{3}\Leftrightarrow\frac{\sqrt{x}-5}{\sqrt{x}+5}< \frac{1}{3}\Leftrightarrow\frac{\sqrt{x}-5}{\sqrt{x}+5}-\frac{1}{3}< 0\)

\(\Leftrightarrow\frac{3\left(\sqrt{x}-5\right)}{3\left(\sqrt{x}+5\right)}-\frac{\sqrt{x}+5}{3\left(\sqrt{x}+5\right)}< 0\)

\(\Leftrightarrow\frac{3\sqrt{x}-15-\sqrt{x}-5}{3\left(\sqrt{x}+5\right)}< 0\)

\(\Leftrightarrow\frac{2\sqrt{x}-20}{3\left(\sqrt{x}+5\right)}< 0\) 

\(\Rightarrow2\sqrt{x}-20< 0\) (vì \(3\left(\sqrt{x}+5\right)>0\) )

\(\Leftrightarrow2\sqrt{x}< 20\)

\(\Leftrightarrow\sqrt{x}< 10\)

\(\Leftrightarrow x< 100\)

Vậy \(0\le x< 100\)và \(x\ne25\) là giá trị cần tìm.

11 tháng 4 2021

a) Thay x = 25 vào biểu thức A , ta có 

\(A=\frac{5-2}{5-1}=\frac{3}{4}\)

b) \(B=\frac{x-5}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{2\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\frac{4\sqrt{x}+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(B =\frac{x+1+2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(B =\frac{\sqrt{x}+1}{\sqrt{x}-1}\)

11 tháng 4 2021

a, Ta có : \(x=25\Rightarrow\sqrt{x}=5\)

Thay vào biểu thức A ta được : 

\(A=\frac{5-2}{5-1}=\frac{3}{4}\)

Vậy với x = 25 thì A = 3/4 

b, Với \(x\ge0;x\ne1\)

 \(B=\frac{x-5}{x-1}-\frac{2}{\sqrt{x}+1}+\frac{4}{\sqrt{x}-1}\)

\(=\frac{x-5-2\left(\sqrt{x}-1\right)+4\left(\sqrt{x}+1\right)}{x-1}=\frac{x-5-2\sqrt{x}+2+4\sqrt{x}+4}{x-1}\)

\(=\frac{x+1+2\sqrt{x}}{x-1}=\frac{\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}\pm1\right)}=\frac{\sqrt{x}+1}{\sqrt{x}-1}\)

c, Ta có P = A/B hay \(P=\frac{\sqrt{x}-2}{\sqrt{x}-1}.\frac{\sqrt{x}-1}{\sqrt{x}+1}=\frac{\sqrt{x}-2}{\sqrt{x}+1}\)

\(\sqrt{P}< \frac{1}{2}\)hay \(\sqrt{\frac{\sqrt{x}-2}{\sqrt{x}+1}}< \frac{1}{2}\Rightarrow\frac{\sqrt{x}-2}{\sqrt{x}+1}< \frac{1}{4}\)

\(\Leftrightarrow\frac{\sqrt{x}-2}{\sqrt{x}+1}-\frac{1}{4}< 0\Leftrightarrow\frac{4\sqrt{x}-8-\sqrt{x}-1}{4\left(\sqrt{x}+1\right)}< 0\)

\(\Rightarrow3\sqrt{x}-9>0\)do \(4\left(\sqrt{x}+1\right)>0\)

\(\Leftrightarrow3\sqrt{x}>9\Leftrightarrow\sqrt{x}>3\Leftrightarrow x>9\)