Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(3\sqrt{48}-2\sqrt{75}+5\sqrt{27}=3\sqrt{16.3}-2\sqrt{25.3}+5\sqrt{9.3}=3.4\sqrt{3}-2.5\sqrt{3}+5.3\sqrt{3}=12\sqrt{3}-10\sqrt{3}+15\sqrt{3}=17\sqrt{3}\)b) \(\left(\sqrt{x^3y}+\sqrt{xy^3}\right):\sqrt{xy}=\sqrt{xy}\left(\sqrt{x^2}+\sqrt{y^2}\right):\sqrt{xy}=\sqrt{x^2}+\sqrt{y^2}=\left|x\right|+\left|y\right|\)
\(đkxđ\Leftrightarrow\hept{\begin{cases}x\ge0\\x\ne1\end{cases}}\)
\(A=\)\(\frac{15\sqrt{x}-11}{x+2\sqrt{x}-3}-\frac{3\sqrt{x}-2}{\sqrt{x}-1}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}.\)
\(=\frac{15\sqrt{x}-11}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}-\)\(\frac{3\sqrt{x}-2}{\sqrt{x}-1}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}\)
\(=\frac{15\sqrt{x}-11-\left(3\sqrt{x}-2\right)\left(\sqrt{x}+3\right)-\left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(=\frac{15\sqrt{x}-11-3x-7\sqrt{x}+6-2x-\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(=\frac{-5x+7\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)\(=\frac{-5x+5\sqrt{x}+2\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(=\frac{-5\sqrt{x}\left(\sqrt{x}-1\right)+2\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)\(=\frac{-5\sqrt{x}+2}{\sqrt{x}+3}\)
\(A=\frac{-5\sqrt{x}+2}{\sqrt{x}+3}\)
\(\Rightarrow\frac{-5\sqrt{x}+2}{\sqrt{x}+3}=-\frac{1}{7}\Rightarrow-7\left(-5\sqrt{x}+2\right)=\sqrt{x}+3\)
\(\Rightarrow35\sqrt{x}-14=\sqrt{x}+3\)
\(\Rightarrow34\sqrt{x}=17\)
\(\Rightarrow\sqrt{x}=\frac{1}{2}\Rightarrow x=\frac{1}{4}\left(tm\right)\)
Vậy với \(x=\frac{1}{4}\)thì \(A=-\frac{1}{7}\)
1) \(\frac{\sqrt{6-2\sqrt{5}}}{2-2\sqrt{5}}=\frac{\sqrt{\left(\sqrt{5}-1\right)^2}}{2\left(1-\sqrt{5}\right)}=\frac{\sqrt{5}-1}{2\left(1-\sqrt{5}\right)}=-\frac{1}{2}\)
2) \(\frac{\sqrt{7-4\sqrt{3}}}{1-\sqrt{3}}=\frac{\sqrt{\left(2-\sqrt{3}\right)^2}}{1-\sqrt{3}}=\frac{2-\sqrt{3}}{1-\sqrt{3}}\)
1)
a)
\(\sqrt{11-6\sqrt{2}}=\sqrt{2-2.3.\sqrt{2}+9}=\left|\sqrt{2}-3\right|=3-\sqrt{2}\)
\(A=3-\sqrt{2}+3+\sqrt{2}=6\)
b)
\(B^2=24+2\sqrt{12^2-4.11}=24+2\sqrt{100}=24+20=44\)
\(B=\sqrt{44}=2\sqrt{11}\)
a) \(\sqrt{15+2\sqrt{5}-\sqrt{21-4\sqrt{5}}}\)
\(=\sqrt{15+2\sqrt{5}-\sqrt{\left(1-2\sqrt{5}\right)^2}}\)
\(=\sqrt{15+2\sqrt{5}-\left(2\sqrt{5}-1\right)}\)
\(=\sqrt{15+2\sqrt{5}-\left(2\sqrt{5}-1\right)}\)
\(=\sqrt{15+2\sqrt{5}-2\sqrt{5}+1}\)
\(=\sqrt{16}\)
\(=4\)
b) \(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)
\(=\sqrt[4]{5-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)
\(=\sqrt[4]{5-\sqrt{3-\sqrt{\left(3-2\sqrt{5}\right)^2}}}\)
\(=\sqrt[4]{5-\sqrt{3-\left(2\sqrt{5}-3\right)}}\)
\(=\sqrt[4]{5-\sqrt{3-2\sqrt{5}+3}}\)
\(=\sqrt[4]{5-\sqrt{6-2\sqrt{5}}}\)
\(=\sqrt[4]{5-\sqrt{\left(1-\sqrt{5}\right)^2}}\)
\(=\sqrt[4]{5-\left(\sqrt{5}-1\right)}\)
\(=\sqrt[4]{5-\sqrt{5}+1}\)
\(=\sqrt[4]{6-\sqrt{5}}\)
\(M=\frac{2\sqrt{x}-3}{\sqrt{x}-4}-\frac{\sqrt{x}+2}{\sqrt{x}+1}-\frac{2-3\sqrt{x}}{x-3\sqrt{x}-4}\)
\(=\frac{2\sqrt{x}-3}{\sqrt{x}-4}-\frac{\sqrt{x}+2}{\sqrt{x}+1}\)\(+\frac{3\sqrt{x}-2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-4\right)}\)
\(=\frac{\left(2\sqrt{x}-3\right)\left(\sqrt{x}+1\right)-\left(\sqrt{x}-2\right)\left(\sqrt{x}+4\right)+3\sqrt{x}-2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-4\right)}\)
\(=\frac{2x-\sqrt{x}-3-x+2\sqrt{x}+8+3\sqrt{x}-2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-4\right)}\)
\(=\frac{x+4\sqrt{x}+3}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-4\right)}=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-4\right)}\)
\(=\frac{\sqrt{x}+3}{\sqrt{x}-4}\)
\(=\left(\sqrt[3]{7}-\sqrt[3]{5}\right)\left(\sqrt[3]{7^2}+\sqrt[3]{7}\cdot\sqrt[3]{5}+\sqrt[3]{5^2}\right)\)
\(=\left(\sqrt[3]{7}\right)^3-\left(\sqrt[3]{5}\right)^3=7-5=2\)