![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Đặt A=\(\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}\)
<=> \(\sqrt{2}\cdot A=\sqrt{8+2\sqrt{7}}-\sqrt{8-2\sqrt{7}}\)=\(\sqrt{\left(\sqrt{7}+1\right)^2}-\sqrt{\left(\sqrt{7}-1\right)^2}\)
= \(\sqrt{7}+1-\sqrt{7}+1=2\)
=> \(A=\frac{2}{\sqrt{2}}\sqrt{2}\)
b) Ta đặt \(B=\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\)
=> \(B^2=8+2\sqrt{16-\left(10+2\sqrt{5}\right)}\)
= \(8+2\sqrt{6-2\sqrt{5}}=8+2\sqrt{5-2\sqrt{5}+1}\)=\(8+2\sqrt{\left(\sqrt{5}-1\right)^2}=8+2\sqrt{5}-2=6+2\sqrt{5}\)
= \(5+2\sqrt{5}+1=\left(\sqrt{5}+1\right)^2\)
=> B=\(\sqrt{5}+1\)
c) Ta xét \(A=\sqrt{4+\sqrt{15}}+\sqrt{4-\sqrt{15}}\)
=> \(\sqrt{2}\cdot A=\sqrt{8+2\sqrt{3}\cdot\sqrt{5}}+\sqrt{8-2\sqrt{3}\cdot\sqrt{5}}\)
= \(\sqrt{\left(\sqrt{3}+\sqrt{5}\right)^2}+\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}\)
= \(\sqrt{3}+\sqrt{5}+\sqrt{5}-\sqrt{3}\)= \(2\sqrt{5}\)
=> A=\(\sqrt{5}\)
Ta có : \(\sqrt{4+\sqrt{15}}+\sqrt{4-\sqrt{15}}-2\sqrt{3-\sqrt{5}}\)
= \(A-\sqrt{6-2\sqrt{5}}\)
= \(\sqrt{5}-\sqrt{\left(\sqrt{5}-1\right)^2}=\sqrt{5}-\sqrt{5}+1\)=1
![](https://rs.olm.vn/images/avt/0.png?1311)
a,A.√2= √(4+2√3)-√(4-2√3)
= √(1+√3)2 -√( √3 -1)2
= 1+√3-√3+1= 2
=> A= 2/√2=√2
B2= (4+√15)2.(4-√15).(√10-√6)2
= (4+√15).1.(16-4√15)
= (4+√15).(4-√15).4
= 4
=> B = √4 = 2
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=\sqrt{4+\sqrt{7}}-\sqrt{4+\sqrt{7}}\Leftrightarrow\sqrt{2}A=\sqrt{8+2\sqrt{7}}-\sqrt{8+2\sqrt{7}}\)
\(\Leftrightarrow\sqrt{2}A=\sqrt{\sqrt{7}^2+2\sqrt{7}+1}-\sqrt{\sqrt{7}^2+2\sqrt{7}+1}\)
\(\Leftrightarrow\sqrt{2}A=\sqrt{7}+1-\sqrt{7}-1=0\)
\(\Leftrightarrow A=0\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{4-2\sqrt{3}}\)
= \(2-\sqrt{3}+\sqrt{\left(\sqrt{3}-1\right)^2}\)
\(2-\sqrt{3}+\sqrt{3}-1\) = \(1\)
b) \(\sqrt{15-6\sqrt{6}}+\sqrt{33-12\sqrt{6}}\)
= \(\sqrt{\left(3-\sqrt{6}\right)^2}+\sqrt{\left(3-2\sqrt{6}\right)^2}\)
= \(3-\sqrt{6}+2\sqrt{6}-3\) = \(\sqrt{6}\)
c) \(\left(15\sqrt{200}-3\sqrt{450}+2\sqrt{50}\right):\sqrt{10}\)
= \(\dfrac{15\sqrt{200}}{\sqrt{10}}-\dfrac{3\sqrt{450}}{\sqrt{10}}+\dfrac{2\sqrt{50}}{\sqrt{10}}\)
= \(15\sqrt{20}-3\sqrt{45}+2\sqrt{5}\)
= \(30\sqrt{5}-9\sqrt{5}+2\sqrt{5}\) = \(23\sqrt{5}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\sqrt{2-\sqrt{3}}-\sqrt{4-\sqrt{15}}=\frac{\sqrt{4-2\sqrt{3}}-\sqrt{8-2\sqrt{15}}}{\sqrt{2}}\)
\(=\frac{\sqrt{\sqrt{3}^2-2\sqrt{3}+1}-\sqrt{\sqrt{5}^2-2\sqrt{3}\sqrt{5}+\sqrt{3}^2}}{\sqrt{2}}\)
\(=\frac{\sqrt{\left(\sqrt{3}-1\right)^2}-\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}}{\sqrt{2}}\)
\(=\frac{\sqrt{3}-1-\sqrt{5}+\sqrt{3}}{\sqrt{2}}\)
\(=\frac{2\sqrt{3}-1-\sqrt{5}}{\sqrt{2}}\)