Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
được bạn ạ mình nhờ thầy giải ra mà bạn tính máy tính mới ko ra thôi
a) \(\sqrt{\left(\sqrt{3}-2\right)^2}+\sqrt{12}-\sqrt{\left(-3\right)^2}\)
\(=\left|\sqrt{3}-2\right|+\sqrt{2^2\cdot3}-\sqrt{3^2}\)
\(=2-\sqrt{3}+2\sqrt{3}-3\)
\(=\sqrt{3}-1\)
b) \(\left(\sqrt{8}-3\sqrt{6}+\sqrt{2}\right)\cdot\sqrt{2}+\sqrt{108}\)
\(=\sqrt{16}-3\sqrt{12}+\sqrt{4}+\sqrt{6^2\cdot3}\)
\(=4-3\sqrt{2^2\cdot3}+2+6\sqrt{3}\)
\(=6-3\cdot2\sqrt{3}+6\sqrt{3}\)
\(=6-6\sqrt{3}+6\sqrt{3}=6\)
a) \(\sqrt{\left(\sqrt{3}-2\right)^2}+\sqrt{12}-\sqrt{\left(-3\right)^2}\)
\(=\left|\sqrt{3}-2\right|+\sqrt{3.4}-\sqrt{3^2}=2-\sqrt{3}+\sqrt{4}.\sqrt{3}-3\)
\(=2-\sqrt{3}+2\sqrt{3}-3=\sqrt{3}-1\)
b) \(\left(\sqrt{8}-3\sqrt{6}+\sqrt{2}\right).\sqrt{2}+\sqrt{108}\)
\(=\sqrt{8}.\sqrt{2}-3\sqrt{6}.\sqrt{2}+\sqrt{2}.\sqrt{2}+\sqrt{108}\)
\(=\sqrt{8.2}-3\sqrt{6.2}+2+\sqrt{36.3}\)
\(=\sqrt{16}-3\sqrt{12}+2+\sqrt{36}.\sqrt{3}\)
\(=\sqrt{4^2}-3\sqrt{4.3}+2+6\sqrt{3}\)
\(=4-3\sqrt{4}.\sqrt{3}+2+6\sqrt{3}\)
\(=4-6\sqrt{3}+2+6\sqrt{3}=6\)
Bài 1:
a) \(\frac{2}{\sqrt{3}-1}-\frac{2}{\sqrt{3}+1}\)
\(=\frac{2\left(\sqrt{3}+1\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}-\frac{2\left(\sqrt{3}-1\right)}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}\)
\(=\frac{2\left(\sqrt{3}+1\right)}{2}-\frac{2\left(\sqrt{3}-1\right)}{2}\)
\(=\sqrt{3}+1-\left(\sqrt{3}-1\right)=2\)
b) \(\frac{2}{5-\sqrt{3}}+\frac{3}{\sqrt{6}+\sqrt{3}}\)
\(=\frac{2\left(5+\sqrt{3}\right)}{\left(5-\sqrt{3}\right)\left(5+\sqrt{3}\right)}+\frac{3\left(\sqrt{6}-\sqrt{3}\right)}{\left(\sqrt{6}+\sqrt{3}\right)\left(\sqrt{6}-\sqrt{3}\right)}\)
\(=\frac{2\left(5+\sqrt{3}\right)}{2}+\frac{3\left(\sqrt{6}-\sqrt{3}\right)}{3}\)
\(=5+\sqrt{3}+\sqrt{6}-\sqrt{3}=5+\sqrt{6}\)
c) ĐK: \(a\ge0;a\ne1\)
\(\left(1+\frac{a+\sqrt{a}}{1+\sqrt{a}}\right).\left(1-\frac{a-\sqrt{a}}{\sqrt{a}-1}\right)+a\)
\(=\left(1+\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{1+\sqrt{a}}\right).\left(1-\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}\right)+a\)
\(=\left(1+\sqrt{a}\right)\left(1-\sqrt{a}\right)+a\)
\(=1-a+a=1\)
\(\left(\sqrt{6}+\sqrt{2}\right)\left(\sqrt{3}-2\right)\left(\sqrt{2+\sqrt{3}}\right)=\left(\sqrt{6}+\sqrt{2}\right)\left(\sqrt{3}-2\right)\left(\frac{\sqrt{6}+\sqrt{2}}{2}\right)\)\(=\left(2+\sqrt{3}\right)\left(\sqrt{3}-2\right)=-1\)
\(\left(\sqrt{6}+\sqrt{2}\right)\left(\sqrt{3}-2\right).\sqrt{2+\sqrt{3}}\)
\(=\sqrt{2}.\left(\sqrt{3}+1\right)\left(\sqrt{3}-2\right).\sqrt{2+\sqrt{3}}\)
\(=\left(\sqrt{3}+1\right)\left(\sqrt{3}-2\right).\sqrt{4+2\sqrt{3}}\)
\(=\left(\sqrt{3}+1\right)\left(\sqrt{3}-2\right).\sqrt{\left(\sqrt{3}+1\right)^2}\)
\(=\left(\sqrt{3}+1\right)\left(\sqrt{3}-2\right)\left(\sqrt{3}+1\right)\)
\(=\left(\sqrt{3}+1\right)^2\left(\sqrt{3}-2\right)\)
\(=\left(4+2\sqrt{3}\right)\left(\sqrt{3}-2\right)\)
\(=2\left(2+\sqrt{3}\right)\left(\sqrt{3}-2\right)\)
\(=-2\)
\(\sqrt{2}D=\left(3\sqrt{2}+\sqrt{6}\right)\cdot\sqrt{12-6\sqrt{3}}=\left(3\sqrt{2}+\sqrt{6}\right)\sqrt{9-2.3\sqrt{3}+3}\)
\(\left(3\sqrt{2}+\sqrt{6}\right)\left(3-\sqrt{3}\right)\)
Nhân ra rút gọn