\(D=\left(3\sqrt{2}+\sqrt{6}\right)\times\sqrt{6-3\sqrt{3}}\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2015

\(\sqrt{2}D=\left(3\sqrt{2}+\sqrt{6}\right)\cdot\sqrt{12-6\sqrt{3}}=\left(3\sqrt{2}+\sqrt{6}\right)\sqrt{9-2.3\sqrt{3}+3}\)

          \(\left(3\sqrt{2}+\sqrt{6}\right)\left(3-\sqrt{3}\right)\)

Nhân ra rút gọn 

3 tháng 7 2017

M không tồn tại thì làm sao mà rút gọn được

4 tháng 7 2017

được bạn ạ mình nhờ thầy giải ra mà bạn tính máy tính mới ko ra thôi

26 tháng 10 2020

a) \(\sqrt{\left(\sqrt{3}-2\right)^2}+\sqrt{12}-\sqrt{\left(-3\right)^2}\)

\(=\left|\sqrt{3}-2\right|+\sqrt{2^2\cdot3}-\sqrt{3^2}\)

\(=2-\sqrt{3}+2\sqrt{3}-3\)

\(=\sqrt{3}-1\)

b) \(\left(\sqrt{8}-3\sqrt{6}+\sqrt{2}\right)\cdot\sqrt{2}+\sqrt{108}\)

\(=\sqrt{16}-3\sqrt{12}+\sqrt{4}+\sqrt{6^2\cdot3}\)

\(=4-3\sqrt{2^2\cdot3}+2+6\sqrt{3}\)

\(=6-3\cdot2\sqrt{3}+6\sqrt{3}\)

\(=6-6\sqrt{3}+6\sqrt{3}=6\)

26 tháng 10 2020

a) \(\sqrt{\left(\sqrt{3}-2\right)^2}+\sqrt{12}-\sqrt{\left(-3\right)^2}\)

\(=\left|\sqrt{3}-2\right|+\sqrt{3.4}-\sqrt{3^2}=2-\sqrt{3}+\sqrt{4}.\sqrt{3}-3\)

\(=2-\sqrt{3}+2\sqrt{3}-3=\sqrt{3}-1\)

b) \(\left(\sqrt{8}-3\sqrt{6}+\sqrt{2}\right).\sqrt{2}+\sqrt{108}\)

\(=\sqrt{8}.\sqrt{2}-3\sqrt{6}.\sqrt{2}+\sqrt{2}.\sqrt{2}+\sqrt{108}\)

\(=\sqrt{8.2}-3\sqrt{6.2}+2+\sqrt{36.3}\)

\(=\sqrt{16}-3\sqrt{12}+2+\sqrt{36}.\sqrt{3}\)

\(=\sqrt{4^2}-3\sqrt{4.3}+2+6\sqrt{3}\)

\(=4-3\sqrt{4}.\sqrt{3}+2+6\sqrt{3}\)

\(=4-6\sqrt{3}+2+6\sqrt{3}=6\)

11 tháng 7 2018

Bài 1:

a)  \(\frac{2}{\sqrt{3}-1}-\frac{2}{\sqrt{3}+1}\)

\(=\frac{2\left(\sqrt{3}+1\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}-\frac{2\left(\sqrt{3}-1\right)}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}\)

\(=\frac{2\left(\sqrt{3}+1\right)}{2}-\frac{2\left(\sqrt{3}-1\right)}{2}\)

\(=\sqrt{3}+1-\left(\sqrt{3}-1\right)=2\)

b)   \(\frac{2}{5-\sqrt{3}}+\frac{3}{\sqrt{6}+\sqrt{3}}\)

\(=\frac{2\left(5+\sqrt{3}\right)}{\left(5-\sqrt{3}\right)\left(5+\sqrt{3}\right)}+\frac{3\left(\sqrt{6}-\sqrt{3}\right)}{\left(\sqrt{6}+\sqrt{3}\right)\left(\sqrt{6}-\sqrt{3}\right)}\)

\(=\frac{2\left(5+\sqrt{3}\right)}{2}+\frac{3\left(\sqrt{6}-\sqrt{3}\right)}{3}\)

\(=5+\sqrt{3}+\sqrt{6}-\sqrt{3}=5+\sqrt{6}\)

c)  ĐK:  \(a\ge0;a\ne1\)

  \(\left(1+\frac{a+\sqrt{a}}{1+\sqrt{a}}\right).\left(1-\frac{a-\sqrt{a}}{\sqrt{a}-1}\right)+a\)

\(=\left(1+\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{1+\sqrt{a}}\right).\left(1-\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}\right)+a\)

\(=\left(1+\sqrt{a}\right)\left(1-\sqrt{a}\right)+a\)

\(=1-a+a=1\)

29 tháng 7 2018

\(\left(\sqrt{6}+\sqrt{2}\right)\left(\sqrt{3}-2\right)\left(\sqrt{2+\sqrt{3}}\right)=\left(\sqrt{6}+\sqrt{2}\right)\left(\sqrt{3}-2\right)\left(\frac{\sqrt{6}+\sqrt{2}}{2}\right)\)\(=\left(2+\sqrt{3}\right)\left(\sqrt{3}-2\right)=-1\)

29 tháng 7 2018

\(\left(\sqrt{6}+\sqrt{2}\right)\left(\sqrt{3}-2\right).\sqrt{2+\sqrt{3}}\)

\(=\sqrt{2}.\left(\sqrt{3}+1\right)\left(\sqrt{3}-2\right).\sqrt{2+\sqrt{3}}\)

\(=\left(\sqrt{3}+1\right)\left(\sqrt{3}-2\right).\sqrt{4+2\sqrt{3}}\)

\(=\left(\sqrt{3}+1\right)\left(\sqrt{3}-2\right).\sqrt{\left(\sqrt{3}+1\right)^2}\)

\(=\left(\sqrt{3}+1\right)\left(\sqrt{3}-2\right)\left(\sqrt{3}+1\right)\)

\(=\left(\sqrt{3}+1\right)^2\left(\sqrt{3}-2\right)\)

\(=\left(4+2\sqrt{3}\right)\left(\sqrt{3}-2\right)\)

\(=2\left(2+\sqrt{3}\right)\left(\sqrt{3}-2\right)\)

\(=-2\)