K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 3 2020

P=\(\frac{x}{\left(x-y\right)\left(x-z\right)}+\frac{y}{\left(y-x\right)\left(y-z\right)}+\frac{z}{\left(z-y\right)\left(z-x\right)}\) =\(\frac{x}{\left(x-y\right)\left(x-z\right)}-\frac{y}{\left(x-y\right)\left(y-z\right)}+\frac{z}{\left(y-z\right)\left(x-z\right)}\) =\(\frac{x\left(y-z\right)-y\left(x-z\right)+z\left(x-y\right)}{\left(x-y\right)\left(y-z\right)\left(x-z\right)}\) =\(\frac{xy-xz-xy+yz+xz-yz}{\left(x-y\right)\left(y-z\right)\left(x-z\right)}\) =0

12 tháng 8 2020

quy đồng mẫu thức ta được

\(\frac{yz\left(z-y\right)+xz\left(x-z\right)+xy\left(y-x\right)}{xyz\left(x-y\right)\left(y-z\right)\left(z-x\right)}\)\(=\frac{yz\left(z-y\right)+xz\left(x-z\right)-xy\left[\left(z-y\right)+\left(x-z\right)\right]}{xyz\left(x-y\right)\left(y-z\right)\left(z-x\right)}\)

\(=\frac{y\left(z-y\right)\left(z-x\right)+x\left(x-z\right)\left(z-y\right)}{xyz\left(x-y\right)\left(y-z\right)\left(z-x\right)}=\frac{\left(z-y\right)\left(z-x\right)\left(y-x\right)}{xyz\left(z-y\right)\left(z-x\right)\left(y-x\right)}=\frac{1}{xyz}\)

29 tháng 11 2016

Phân tích mẫu thức thành nhân tử

16 tháng 9 2018

Bạn quy đồng rồi phân tích tử thành nhân tử rồi ra à.

13 tháng 2 2020

\(A=\frac{x^2-yz}{\left(x+y\right)\left(x+z\right)}+\frac{y^2-xz}{\left(y+z\right)\left(y+x\right)}+\frac{z^2-xy}{\left(z+x\right)\left(z+y\right)}\)

\(=\frac{\left(x^2-yz\right)\left(y+z\right)+\left(y^2-xz\right)\left(z+x\right)+\left(z^2-xy\right)\left(x+y\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)

\(=\frac{x^2y+x^2z-y^2z-yz^2+y^2z+y^2x-xz^2-x^2z+z^2x+z^2y-x^2y-xy^2}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)

\(=\frac{0}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}=0\)

Vậy : \(A=0\)

13 tháng 2 2020

\(\frac{(x^2-yz)(y+z)}{(x+y)(x+z)(y+z)}\) = ​​\(\frac{(y^2-xz)(x+z)}{(x+y)(x+z)(y+z)}\)​= \(\frac{(z^2-xy)(x+y)}{(x+y)(x+z)(y+z)}\)

25 tháng 1 2017

Ta có: \(\frac{x^2-yz}{\left(x+y\right)\left(x+z\right)}=\frac{x^2+xy-xy-yz}{\left(x+y\right)\left(x+z\right)}\)

\(=\frac{x\left(x+y\right)-y\left(x+z\right)}{\left(x+y\right)\left(x+z\right)}\)

\(=\frac{x}{x+z}-\frac{y}{x+y}\)

Tương tự: \(\frac{y^2-xz}{\left(x+y\right)\left(y+z\right)}=\frac{y}{y+z}-\frac{y}{x+y}\)

\(\frac{z^2-xz}{\left(x+z\right)\left(y+z\right)}=\frac{z}{y+z}-\frac{x}{x+z}\)

Do đó: \(A=\frac{x}{x+z}-\frac{y}{x+y}+\frac{y}{y+z}-\frac{x}{x+y}+\frac{z}{y+z}-\frac{x}{x+z}=0\)

8 tháng 11 2018

\(A=\frac{x^2}{\left(x-y\right)\left(x-z\right)}+\frac{y^2}{\left(y-x\right)\left(y-z\right)}+\frac{z^2}{\left(z-x\right)\left(z-y\right)}\)

\(=\frac{x^2}{\left(x-y\right)\left(x-z\right)}-\frac{y^2}{\left(x-y\right)\left(y-z\right)}+\frac{z^2}{\left(x-z\right)\left(y-z\right)}\)

\(=\frac{x^2\left(y-z\right)-y^2\left(x-z\right)+z^2\left(x-y\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}\)

     \(x^2\left(y-z\right)-y^2\left(x-z\right)+z^2\left(x-y\right)\)

\(=x^2y-x^2z-xy^2+y^2z+z^2\left(x-y\right)\)

\(=xy\left(x-y\right)-z\left(x-y\right)\left(x+y\right)+z^2\left(x-y\right)\)

\(=\left(x-y\right)\left[xy-zx-zy+z^2\right]\)

\(=\left(x-y\right)\left[x\left(y-z\right)-z\left(y-z\right)\right]=\left(x-y\right)\left(x-z\right)\left(y-z\right)\)

Vậy A = 1

27 tháng 9 2015

\(\frac{y-z}{\left(x-y\right)\left(x-z\right)}=\frac{\left(x-z\right)-\left(x-y\right)}{\left(x-y\right)\left(x-z\right)}=\frac{1}{x-y}-\frac{1}{x-z}\)

\(\frac{z-x}{\left(y-z\right)\left(y-x\right)}=\frac{\left(y-x\right)-\left(y-z\right)}{\left(y-z\right)\left(y-x\right)}=\frac{1}{y-z}-\frac{1}{y-x}\)

\(\frac{x-y}{\left(z-x\right)\left(z-y\right)}=\frac{\left(z-y\right)-\left(z-x\right)}{\left(z-x\right)\left(z-y\right)}=\frac{1}{z-x}-\frac{1}{z-y}\)

Suy ra: \(\frac{y-z}{\left(x-y\right)\left(x-z\right)}+\frac{z-x}{\left(y-z\right)\left(y-x\right)}+\frac{x-y}{\left(z-x\right)\left(z-y\right)}\)

\(=\frac{1}{x-y}-\frac{1}{x-z}+\frac{1}{y-z}-\frac{1}{y-x}+\frac{1}{z-x}-\frac{1}{z-y}\)

\(=\frac{2}{x-y}+\frac{2}{y-z}+\frac{2}{z-x}\)

rồi bí mẹ chỗ này