K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 10 2023

\(A=\dfrac{x+12}{x-4}+\dfrac{1}{\sqrt{x}+2}-\dfrac{4}{\sqrt{x}-2}\)

\(=\dfrac{x+12+\sqrt{x}-2-4\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{x+\sqrt{x}+10-4\sqrt{x}-8}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{x-3\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\dfrac{\sqrt{x}-1}{\sqrt{x}+2}\)

22 tháng 10 2023

x−3√x+2/(√x+2)(√x−2) giải chi tiết ra đi

10 tháng 11 2021

a.\(A=\dfrac{x^2-4x+4}{x^3-2x^2-\left(4x-8\right)}=\dfrac{\left(x-2\right)^2}{x^2\left(x-2\right)-4\left(x-2\right)}=\dfrac{\left(x-2\right)^2}{\left(x^2-4\right)\left(x-2\right)}=\dfrac{x-2}{\left(x-2\right)\left(x+2\right)}=\dfrac{1}{x+2}\)

 

10 tháng 11 2021

\(A=\dfrac{\left(x-2\right)^2}{x^2\left(x-2\right)-4\left(x-2\right)}\left(x\ne\pm2\right)\\ A=\dfrac{\left(x-2\right)^2}{\left(x-2\right)^2\left(x+2\right)}=\dfrac{1}{x+2}\\ B=\dfrac{x+2-x+\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\cdot\dfrac{4\sqrt{x}}{3}\left(x>0\right)\\ B=\dfrac{4\sqrt{x}\left(\sqrt{x}+1\right)}{3\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}=\dfrac{4\sqrt{x}}{3\left(x-\sqrt{x}+1\right)}\)

NV
11 tháng 7 2021

Coi như biểu thức xác định:

\(=\dfrac{\left(\sqrt{x}\right)^3-1^3}{\sqrt{x}-1}=\dfrac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{\sqrt{x}-1}=x+\sqrt{x}+1\)

\(\dfrac{x\sqrt{x}-1}{\sqrt{x}-1}=\dfrac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{\sqrt{x}-1}=x+\sqrt{x}+1\)

7 tháng 10 2021

a) \(P=\dfrac{x+\sqrt{x}+3\sqrt{x}-3-6\sqrt{x}+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)

b) \(P=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}=-1\)

\(\Leftrightarrow-\sqrt{x}-1=\sqrt{x}-1\Leftrightarrow2\sqrt{x}=0\Leftrightarrow x=0\left(tm\right)\)

c) \(P=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}=1-\dfrac{2}{\sqrt{x}+1}\in Z\)

\(\Rightarrow\sqrt{x}+1\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\)

Kết hợp đk:

\(\Rightarrow x\in\left\{0\right\}\)

d) \(P=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}=\dfrac{\left(\sqrt{x}+1\right)-2}{\sqrt{x}+1}=1-\dfrac{2}{\sqrt{x}+1}< 1\)

 

7 tháng 10 2021

\(a,P=\dfrac{x+\sqrt{x}+3\sqrt{x}-3-6\sqrt{x}+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\\ P=\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\\ b,P=-1\Leftrightarrow\sqrt{x}-1=-\sqrt{x}-1\\ \Leftrightarrow2\sqrt{x}=0\Leftrightarrow x=0\left(tm\right)\\ c,P\in Z\Leftrightarrow\dfrac{\sqrt{x}+1-2}{\sqrt{x}+1}\in Z\Leftrightarrow1-\dfrac{2}{\sqrt{x}+1}\in Z\\ \Leftrightarrow2⋮\sqrt{x}+1\\ \Leftrightarrow\sqrt{x}+1\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\\ \Leftrightarrow\sqrt{x}+1\in\left\{1;2\right\}\left(\sqrt{x}+1\ge1\right)\\ \Leftrightarrow\sqrt{x}\in\left\{0;1\right\}\\ \Leftrightarrow x\in\left\{0;1\right\}\)

\(d,P=\dfrac{\sqrt{x}+1-2}{\sqrt{x}+1}=1-\dfrac{2}{\sqrt{x}+1}\)

Có \(\dfrac{2}{\sqrt{x}+1}>0\left(2>0;\sqrt{x}+1>0\right)\Leftrightarrow1-\dfrac{2}{\sqrt{x}+1}< 1\Leftrightarrow P< 1\)

\(e,P=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}=1-\dfrac{2}{\sqrt{x}+1}\)

Có \(\sqrt{x}+1\ge1\Leftrightarrow\dfrac{2}{\sqrt{x}+1}\le2\Leftrightarrow1-\dfrac{2}{\sqrt{x}+1}\ge1-2=-1\)

\(P_{min}=-1\Leftrightarrow x=0\)

 

26 tháng 7 2021

đk \(\left\{{}\begin{matrix}x\ne1\\x>0\end{matrix}\right.\)

A= \(\dfrac{-x\left(1+\sqrt{x}\right)}{\sqrt{x}\left(1-x\right)}\)+\(\dfrac{3\sqrt{x}\left(1-\sqrt{x}\right)}{\left(1-x\right)\sqrt{x}}\)+\(\dfrac{\left(6\sqrt{x}-4\right)\sqrt{x}}{\left(1-x\right)\sqrt{x}}\)

=\(\dfrac{-x-x\sqrt{x}+3\sqrt{x}-3x+6x-4\sqrt{x}}{\left(1-x\right)\sqrt{x}}\)

=\(\dfrac{-\left(x-2\sqrt{x}=1\right)}{1-x}\)=-\(\dfrac{\left(\sqrt{x}-1\right)^2}{1-x}\)=\(\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)

Ta có: \(A=\dfrac{\sqrt{x}}{\sqrt{x}-1}+\dfrac{3\sqrt{x}}{x+\sqrt{x}}+\dfrac{6\sqrt{x}-4}{1-x}\)

\(=\dfrac{\sqrt{x}}{\sqrt{x}-1}+\dfrac{3}{\sqrt{x}+1}-\dfrac{6\sqrt{x}-4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{x+\sqrt{x}+3\sqrt{x}-3-6\sqrt{x}+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)

9 tháng 9 2021

\(\sqrt{x}-\sqrt{x-\sqrt{x}+\dfrac{1}{4}}\left(đk:x\ge0\right)\left(1\right)\)

\(=\sqrt{x}-\sqrt{\left(\sqrt{x}-\dfrac{1}{2}\right)^2}\)

\(=\sqrt{x}-\left|\sqrt{x}-\dfrac{1}{2}\right|\)

TH1: \(x\ge\dfrac{1}{4}\)

\(\left(1\right)=\sqrt{x}-\sqrt{x}+\dfrac{1}{2}=\dfrac{1}{2}\)

TH2: \(0\le x< \dfrac{1}{4}\)

\(\left(1\right)=\sqrt{x}+\sqrt{x}-\dfrac{1}{2}=2\sqrt{x}-\dfrac{1}{2}\)

NV
9 tháng 9 2021

\(=\sqrt{x}-\sqrt{\left(\sqrt{x}-\dfrac{1}{2}\right)^2}=\sqrt{x}-\left|\sqrt{x}-\dfrac{1}{2}\right|\)

\(=\left[{}\begin{matrix}\dfrac{1}{2}\text{ nếu }x\ge\dfrac{1}{4}\\2\sqrt{x}-\dfrac{1}{2}\text{ nếu }0\le x< \dfrac{1}{4}\end{matrix}\right.\)

Sửa đề: (1+căn x)^2-4căn x

\(A=\dfrac{x+2\sqrt{x}+1-4\sqrt{x}}{\sqrt{x}-1}=\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}-1}=\sqrt{x}-1\)

30 tháng 6 2023

Làm bài rút gọn cũng vẫn cần điều kiện mà em thấy anh không bao giờ nêu điều kiện nên em bổ sung:

ĐK: \(x\ge0;x\ne1\)

13 tháng 8 2023

\(A=\dfrac{\left(1+\sqrt{x}\right)^2-4\sqrt{x}}{\sqrt{x}-1}\left(dkxd:x\ge0,x\ne1\right)\\ =\dfrac{1+2\sqrt{x}+x-4\sqrt{x}}{\sqrt{x}-1}\\ =\dfrac{x-2\sqrt{x}+1}{\sqrt{x}-1}\\ =\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}-1}\\ =\sqrt{x}-1\)

Vậy \(A=\sqrt{x}-1\) với \(x\ge0,x\ne1\)

A=\(\dfrac{1+2\sqrt{x}+x-4\sqrt{x}}{\sqrt{x}-1}\)

A=\(\dfrac{x-2\sqrt{x}+1}{\sqrt{x}-1}\)

A=\(\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}-1}\)

A=\(\sqrt{x}-1\)

4 tháng 9 2021

=\(\sqrt{\left(x-\dfrac{1}{2}\right)}\)

= x-\(x-\dfrac{1}{2}nếu\) x ≥ \(\dfrac{1}{2}\)

\(\dfrac{1}{2}\)-x nếu x <\(\dfrac{1}{2}\)

 

=\(\sqrt{\left(x^2\right)}\) +\(\sqrt{\left(x^2\right)}^2\)

=/x\(^2\)/+/\(x^2\)/

=x\(^2\) +x\(^2\) nếu x ≥0    x\(^2\)-x\(^2\) nếu x ≤ 0