Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có 2x(2x + 1)2 - 3x(x + 3)(x - 3) - 4x(x + 1)2
= 2x(4x2 + 4x + 1) - 3x(x2 - 9) - 4x(x2 + 2x + 1)
= 8x3 + 8x2 + 2x - 3x3 + 27x - 4x3 - 8x2 - 4x
= 8x3 - 3x3 - 4x3 + 8x2 - 8x2 + 2x + 27x - 4x
= x3 + 25x
a oi hinh nhu sai r con +16x2 nua co a , anh tinh lai ho e duoc kh
\(2x^2\left(x-2\right)-2x\left(x-1\right)\left(x+1\right)=2x^3-4x^2-2x^3+2x=-4x^2+2x=-2x\left(2x-1\right)\)
\(2x^2\left(x-2\right)-2x\left(x-1\right)\left(x+1\right)\)
\(=2x^3-4x^2-2x\left(x^2-1\right)\)
\(=2x^3-4x^2-2x^3+2x=-4x^2+2x\)
Bài 1:
\(a,\left(x^2-1\right)^3-\left(x^4+x^2+1\right)\left(x^2-1\right)\)
\(=x^6-3x^4+3x^2-1-x^6+1\)
\(=-3x^2\left(x^2-1\right)\)
\(b,\left(x^4-3x^2+9\right)\left(x^2+3\right)-\left(3+x^2\right)^3\)
\(=x^6+27-27-27x^2-9x^4-x^6\)
\(=-9x^2\left(3-x^2\right)\)
Bài 5:
\(A=x^2-2x+1\)
\(=\left(x^2-2x+1\right)-2\)
\(=\left(x-1\right)^2-2\)
Với mọi giá trị của x ta có:
\(\left(x-1\right)^2\ge0\Rightarrow\left(x-1\right)^2-2\ge-2\)
Vậy Min A = -2
Để A = -2 thì \(x-1=0\Rightarrow x=1\)
b, \(B=4x^2+4x+5\)
\(=\left(4x^2+4x+1\right)+4\)
\(=\left(2x+1\right)^2+4\)
Với mọi giá trị của x ta có:
\(\left(2x+1\right)^2\ge0\Rightarrow\left(2x+1\right)^2+4\ge4\)
Vậy Min B = 4
Để B = 4 thì \(2x+1=0\Rightarrow2x=-1\Rightarrow x=-\dfrac{1}{2}\)
c, \(C=2x-x^2-4\)
\(=-\left(x^2-2x+1\right)-3\)
\(=-\left(x-1\right)^2-3\)
Với mọi giá trị của x ta có:
\(\left(x-1\right)^2\ge0\Rightarrow-\left(x-1\right)^2\le0\Rightarrow-\left(x-1\right)^2-3\le-3\)Vậy Max C = -3
để C = -3 thì \(x-1=0\Rightarrow x=1\)
\(\left(2x+1\right)^2-\left(2x+1\right)\left(2x-1\right)\)
\(=4x^2+4x+1-4x^2+1=4x+2=2\left(x+2\right)\)
chúc bn hc tốt ^^
\(A=x\left(x+4\right)-6\left(x-1\right)\left(x+1\right)+\left(2x-1\right)^2\)
\(A=x^2+4x-6\left(x^2-1\right)+\left(4x^2-4x+1\right)\)
\(A=x^2+4x-6x^2+6+4x^2-4x+1\)
\(A=-x^2+7\)
Để A có giá trị bằng 3 thì :
\(-x^2+7=3\)
\(-x^2=-4\)
\(x^2=4\)
\(x\in\left\{\pm2\right\}\)
Vậy..........