Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=2-x\sqrt{\frac{x\left(x-2\right)}{\left(x-2\right)^2}+\frac{1}{\left(x-2\right)^2}}=2-x\sqrt{\frac{\left(x-1\right)^2}{\left(x-2\right)^2}}\)
\(=2-x\cdot\frac{x-1}{x-2}=\frac{2x-4}{x-2}-\frac{x^2-x}{x-2}=\frac{-x^2+3x-4}{x-2}\)
\(B=\frac{2\sqrt{5}x}{x-2}\cdot\left|x-2\right|+\frac{3\sqrt{5}x^2}{x}=\frac{2\sqrt{5}x}{x-2}\cdot\left|x-2\right|+3\sqrt{5}x\)
Với 0 < x < 2 \(B=-2\sqrt{5}x+3\sqrt{5}x=\sqrt{5}x\)
Với x > 2 \(B=2\sqrt{5}x+3\sqrt{5}x=5\sqrt{5}x\)
\(C=\frac{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}{\sqrt{x}\left(\sqrt{x}+5\right)}+\sqrt{\frac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-5\right)^2}}=\frac{\sqrt{x}-5}{\sqrt{x}}+\left|\frac{\sqrt{x}-1}{\sqrt{x}-5}\right|\)
Với 0 < x < 1 \(C=\frac{\sqrt{x}-5}{\sqrt{x}}+\frac{\sqrt{x}-1}{\sqrt{x}-5}=\frac{x-10\sqrt{x}+25}{x\left(\sqrt{x}-5\right)}+\frac{x-\sqrt{x}}{x\left(\sqrt{x}-5\right)}=\frac{2x-11\sqrt{x}+25}{x\left(\sqrt{x}-5\right)}\)
Với 1 < x < 5 \(C=\frac{\sqrt{x}-5}{\sqrt{x}}-\frac{\sqrt{x}-1}{\sqrt{x}-5}=\frac{x-10\sqrt{x}+25}{x\left(\sqrt{x}-5\right)}-\frac{x-\sqrt{x}}{x\left(\sqrt{x}-5\right)}=\frac{-9\sqrt{x}+25}{x\left(\sqrt{x}-5\right)}\)
Với x > 5 \(C=\frac{\sqrt{x}-5}{\sqrt{x}}+\frac{\sqrt{x}-1}{\sqrt{x}-5}=\frac{x-10\sqrt{x}+25}{x\left(\sqrt{x}-5\right)}+\frac{x-\sqrt{x}}{x\left(\sqrt{x}-5\right)}=\frac{2x-11\sqrt{x}+25}{x\left(\sqrt{x}-5\right)}\)
a) \(\frac{b-16}{4-\sqrt{b}}\left(b\ge0,b\ne16\right)\)
\(=\frac{\left(\sqrt{b}-4\right)\left(\sqrt{b}+4\right)}{4-\sqrt{b}}\)
\(=-\sqrt{b}-4\)
b) \(\frac{a-4\sqrt{a}+4}{a-4}\left(a\ge0;a\ne4\right)\)
\(=\frac{a-2.\sqrt{a}.2+4}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}\)
\(=\frac{\left(\sqrt{a}-2\right)^2}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}=\frac{\sqrt{a}-2}{\sqrt{a}+2}\)
c) \(2x+\sqrt{1+4x^2-4x}\) với \(x\le\frac{1}{2}\)
\(=2x+\sqrt{\left(1-2x\right)^2}\)
\(=2x+\left|1-2x\right|=2x+1-2x=1\)
d) \(\frac{4a-4b}{\sqrt{a}-\sqrt{b}}\left(a,b\ge0;a\ne b\right)\)
\(=\frac{4\left(a-b\right)}{\sqrt{a}-\sqrt{b}}=\frac{4\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{a}-\sqrt{b}}\)
\(=4\left(\sqrt{a}+\sqrt{b}\right)\)
Đk: \(a^2>b^2\); b \(\ne\)0
Q = \(\frac{a}{\sqrt{a^2-b^2}}-\left(1+\frac{a}{\sqrt{a^2-b^2}}\right):\frac{b}{a-\sqrt{a^2-b^2}}\)
Q = \(\frac{a}{\sqrt{a^2-b^2}}-\frac{\sqrt{a^2-b^2}+a}{\sqrt{a^2-b^2}}\cdot\frac{a-\sqrt{a^2-b^2}}{b}\)
Q = \(\frac{a}{\sqrt{a^2-b^2}}-\frac{a^2-\left(a^2-b^2\right)}{b\sqrt{a^2-b^2}}\)
Q = \(\frac{ab-b^2}{b\sqrt{a^2-b^2}}=\frac{b\left(a-b\right)}{b\sqrt{\left(a-b\right)\left(a+b\right)}}=\frac{\sqrt{a-b}}{\sqrt{a+b}}\)