Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(x\notin\left\{0;-5\right\}\)
\(A=\dfrac{x^2}{5x+25}+\dfrac{2\left(x-5\right)}{x}+\dfrac{50+5x}{x\left(x+5\right)}\)
\(=\dfrac{x^2}{5\left(x+5\right)}+\dfrac{2\left(x-5\right)}{x}+\dfrac{5x+50}{x\left(x+5\right)}\)
\(=\dfrac{x^3+2\cdot5\left(x-5\right)\left(x+5\right)+5\left(5x+50\right)}{5x\left(x+5\right)}\)
\(=\dfrac{x^3+10x^2-250+25x+250}{5x\left(x+5\right)}\)
\(=\dfrac{x^3+10x^2+25x}{5x\left(x+5\right)}=\dfrac{x\left(x^2+10x+25\right)}{5x\left(x+5\right)}\)
\(=\dfrac{\left(x+5\right)^2}{5\left(x+5\right)}=\dfrac{x+5}{5}\)
\(A=\dfrac{x^2}{5x+25}+\dfrac{2\left(x-5\right)}{x}+\dfrac{50+5x}{x\left(x+5\right)}\left(ĐKXĐ:x\ne0;x\ne-5\right)\)
\(A=\dfrac{x^2}{5\left(x+5\right)}+\dfrac{2\left(x-5\right)}{x}+\dfrac{50+5x}{x\left(x+5\right)}\)
\(A=\dfrac{x^2.x}{5x\left(x+5\right)}+\dfrac{2.5\left(x+5\right)\left(x-5\right)}{5x\left(x+5\right)}+\dfrac{5\left(50+5x\right)}{5x\left(x+5\right)}\)
\(A=\dfrac{x^3}{5x\left(x+5\right)}+\dfrac{10.\left(x^2-25\right)}{5x\left(x+5\right)}+\dfrac{250+25x}{5x\left(x+5\right)}\)
\(A=\dfrac{x^3}{5x\left(x+5\right)}+\dfrac{10x^2-250}{5x\left(x+5\right)}+\dfrac{250+25x}{5x\left(x+5\right)}\)
\(A=\dfrac{x^3+10x^2-250+250+25x}{5x\left(x+5\right)}\)
\(A=\dfrac{x^3+10x^2+25x}{5x\left(x+5\right)}\)
\(A=\dfrac{x\left(x^2+10x+25\right)}{5x\left(x+5\right)}\)
\(A=\dfrac{\left(x+5\right)^2}{5\left(x+5\right)}\)
\(A=\dfrac{x+5}{5}\)
a) ĐKXĐ: \(x\notin\left\{1;-1\right\}\)
b) Ta có: \(B=\left(\dfrac{2x+1}{x-1}+\dfrac{8}{x^2-1}-\dfrac{x-1}{x+1}\right)\cdot\dfrac{x^2-1}{5}\)
\(=\left(\dfrac{\left(2x+1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}+\dfrac{8}{\left(x-1\right)\left(x+1\right)}-\dfrac{\left(x-1\right)^2}{\left(x+1\right)\left(x-1\right)}\right)\cdot\dfrac{\left(x-1\right)\left(x+1\right)}{5}\)
\(=\dfrac{2x^2+2x+x+1+8-\left(x^2-2x+1\right)}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{\left(x-1\right)\left(x+1\right)}{5}\)
\(=\dfrac{2x^2+3x+9-x^2+2x-1}{5}\)
\(=\dfrac{x^2+5x+8}{5}\)
Ta có: \(x^2+5x+8\)
\(=x^2+2\cdot x\cdot\dfrac{5}{2}+\dfrac{25}{4}+\dfrac{7}{4}\)
\(=\left(x+\dfrac{5}{2}\right)^2+\dfrac{7}{4}\)
Ta có: \(\left(x+\dfrac{5}{2}\right)^2\ge0\forall x\)
\(\Leftrightarrow\left(x+\dfrac{5}{2}\right)^2+\dfrac{7}{4}\ge\dfrac{7}{4}>0\forall x\)
\(\Leftrightarrow x^2+5x+8>0\forall x\)
\(\Leftrightarrow\dfrac{x^2+5x+8}{5}>0\forall x\) thỏa mãn ĐKXĐ(đpcm)
\(a,A=\dfrac{x+1+2-2x+5-x}{\left(1-x\right)\left(x+1\right)}\cdot\dfrac{\left(1-x\right)\left(x+1\right)}{2x-1}\left(x\ne1;x\ne-1;x\ne\dfrac{1}{2}\right)\\ A=\dfrac{8-2x}{2x-1}\\ b,A>0\Leftrightarrow\dfrac{8-2x}{2x-1}>0\\ \Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}8-2x>0\\2x-1>0\end{matrix}\right.\\\left\{{}\begin{matrix}8-2x< 0\\2x-1< 0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x< 4\\x>\dfrac{1}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}x>4\\x< \dfrac{1}{2}\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{2}< x< 4\\x\in\varnothing\end{matrix}\right.\Leftrightarrow\dfrac{1}{2}< x< 4\)
a)
Đặt
\(\sqrt{1+x}=a; \sqrt{1-x}=b\Rightarrow \left\{\begin{matrix} ab=\sqrt{(1+x)(1-x)}=\sqrt{1-x^2}\\ a\geq b\\ a^2+b^2=2\end{matrix}\right.\)
Khi đó:
\(A=\frac{\sqrt{1-\sqrt{1-x^2}}(\sqrt{(1+x)^3}+\sqrt{(1-x)^3})}{2-\sqrt{1-x^2}}\)
\(=\frac{\sqrt{\frac{a^2+b^2}{2}-ab}(a^3+b^3)}{a^2+b^2-ab}=\frac{\sqrt{\frac{a^2+b^2-2ab}{2}}(a+b)(a^2-ab+b^2)}{a^2+b^2-ab}\)
\(=\sqrt{\frac{a^2-2ab+b^2}{2}}(a+b)=\sqrt{\frac{(a-b)^2}{2}}(a+b)=\frac{1}{\sqrt{2}}|a-b|(a+b)\)
\(=\frac{1}{\sqrt{2}}(a-b)(a+b)=\frac{1}{\sqrt{2}}(a^2-b^2)=\frac{1}{\sqrt{2}}[(1+x)-(1-x)]=\sqrt{2}x\)
Sửa đề: \(\frac{25}{(x+z)^2}=\frac{16}{(z-y)(2x+y+z)}\)
Ta có:
Áp dụng tính chất dãy tỉ số bằng nhau thì:
\(k=\frac{a}{x+y}=\frac{5}{x+z}=\frac{a+5}{2x+y+z}=\frac{5-a}{z-y}\) ($k$ là một số biểu thị giá trị chung)
Khi đó:
\(\frac{16}{(z-y)(2x+y+z)}=\frac{25}{(x+z)^2}=(\frac{5}{x+z})^2=k^2\)
Mà: \(k^2=\frac{a+5}{2x+y+z}.\frac{5-a}{z-y}=\frac{25-a^2}{(2x+y+z)(z-y)}\)
Do đó: \(\frac{16}{(z-y)(2x+y+z)}=\frac{25-a^2}{(2x+y+z)(z-y)}\Rightarrow 16=25-a^2\)
\(\Rightarrow a^2=9\Rightarrow a=\pm 3\)
Suy ra:
\(Q=\frac{a^6-2a^5+a-2}{a^5+1}=\frac{a^5(a-2)+(a-2)}{a^5+1}=\frac{(a-2)(a^5+1)}{a^5+1}=a-2=\left[\begin{matrix}
1\\
-5\end{matrix}\right.\)
Ta có: \(A=\left(\dfrac{x-2}{x+2}+\dfrac{x}{x-2}+\dfrac{2x+4}{4-x^2}\right)\cdot\left(x+\dfrac{5}{x-3}\right)\)
\(=\left(\dfrac{\left(x-2\right)^2}{\left(x+2\right)\left(x-2\right)}+\dfrac{x\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\dfrac{2x+4}{\left(x-2\right)\left(x+2\right)}\right)\cdot\left(\dfrac{x\left(x-3\right)+5}{\left(x-3\right)}\right)\)
\(=\dfrac{x^2-4x+4+x^2+2x-2x-4}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{x^2-3x+5}{x-3}\)
\(=\dfrac{2x^2-4x}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{x^2-3x+5}{x-3}\)
\(=\dfrac{2x\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{x^2-3x+5}{x-3}\)
\(=\dfrac{2x\left(x^2-3x+5\right)}{\left(x+2\right)\left(x-3\right)}\)
\(B=\left(\dfrac{x}{x^2-25}-\dfrac{x-5}{x^2+5x}\right):\dfrac{2x-5}{x^2+5x}+\dfrac{x}{5-x}\) (1).
Đkxđ: \(x\ne\pm5;\)
(1) \(=\left(\dfrac{x}{\left(x+5\right)\left(x-5\right)}-\dfrac{x-5}{x\left(x+5\right)}\right):\dfrac{2x-5}{x\left(x+5\right)}+\dfrac{x}{5-x}\)
\(=\left(\dfrac{x^2-\left(x-5\right)\left(x-5\right)}{x\left(x+5\right)\left(x-5\right)}\right):\dfrac{2x-5}{x\left(x+5\right)}+\dfrac{x}{5-x}\)
\(=\dfrac{25}{x\left(x+5\right)\left(x-5\right)}.\dfrac{x\left(x+5\right)}{2x-5}-\dfrac{x}{x-5}\)
\(=\dfrac{25}{\left(x-5\right)\left(2x-5\right)}-\dfrac{x}{x-5}\)
\(=\dfrac{25-x\left(2x-5\right)}{\left(x-5\right)\left(2x-5\right)}\)
\(=\dfrac{25-2x^2+5x}{\left(x-5\right)\left(2x-5\right)}\)
Ta có: \(Q=\left(\dfrac{1}{x+5}+\dfrac{1}{x-5}\right):\dfrac{2x}{x^2-25}\)
\(=\left(\dfrac{x-5}{\left(x+5\right)\left(x-5\right)}+\dfrac{x+5}{\left(x-5\right)\left(x+5\right)}\right):\dfrac{2x}{\left(x-5\right)\left(x+5\right)}\)
\(=\dfrac{x-5+x+5}{\left(x+5\right)\left(x-5\right)}:\dfrac{2x}{\left(x-5\right)\left(x+5\right)}\)
\(=\dfrac{2x}{\left(x+5\right)\left(x-5\right)}\cdot\dfrac{\left(x-5\right)\left(x+5\right)}{2x}\)
\(=1\)
Có: \(x^2-25=\left(x-5\right)\left(x+5\right)\)
ĐKXĐ của Q là x ≠ 5; x ≠ -5
Mà theo đề: x = 5; x = -5
=> Ko có giá trị của Q tìm đc