Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\frac{x\sqrt{2}}{\sqrt{2}\sqrt{x}\left(\sqrt{2}+\sqrt{x}\right)}+\frac{\sqrt{2}\left(\sqrt{x}-\sqrt{2}\right)}{\left(\sqrt{x}-\sqrt{2}\right)\left(\sqrt{x}+\sqrt{2}\right)}\)
\(=\frac{\sqrt{x}}{\sqrt{x}+\sqrt{2}}+\frac{\sqrt{2}}{\sqrt{x}+\sqrt{2}}=1\)
\(A=\frac{\left(x+\sqrt{x^2-2x}\right)^2-\left(x-\sqrt{x^2-2x}\right)^2}{\left(x-\sqrt{x^2-2x}\right)\left(x+\sqrt{x^2-2x}\right)}\)
\(=\frac{2x\times2\sqrt{x^2-2x}}{2x}=2\sqrt{x^2-2x}\)
ĐKXĐ: \(x\ge1\); x khác 2; 3
Ta có:
\(\frac{1}{\sqrt{x}-\sqrt{x-1}}=\frac{\sqrt{x}+\sqrt{x-1}}{x-\left(x-1\right)}=\sqrt{x}+\sqrt{x-1}\)
\(\frac{x-3}{\sqrt{x-1}-\sqrt{2}}=\frac{\left(x-3\right)\left(\sqrt{x-1}+\sqrt{2}\right)}{x-1-2}=\sqrt{x-1}+\sqrt{2}\)
=> \(\frac{1}{\sqrt{x}-\sqrt{x-1}}-\frac{x-3}{\sqrt{x-1}-\sqrt{2}}=\sqrt{x}+\sqrt{x-1}-\left(\sqrt{x-1}+\sqrt{2}\right)=\sqrt{x}-\sqrt{2}\)
\(\frac{2}{\sqrt{2}-\sqrt{x}}-\frac{\sqrt{x}+\sqrt{2}}{\sqrt{2x}-x}=\frac{2\sqrt{x}-\sqrt{x}-2}{\sqrt{x}\left(\sqrt{2}-\sqrt{x}\right)}=\frac{\sqrt{x}-2}{\sqrt{x}\left(\sqrt{2}-\sqrt{x}\right)}\)
=> \(P=\left(\sqrt{x}-\sqrt{2}\right).\frac{\sqrt{x}-2}{\sqrt{x}\left(\sqrt{2}-\sqrt{x}\right)}=\frac{2-\sqrt{x}}{\sqrt{x}}\)
a) P = \(\left(\frac{\sqrt{x}}{\sqrt{x}-2}+\frac{\sqrt{x}}{\sqrt{x}+2}\right)\)\(.\)\(\frac{x-4}{\sqrt{4x}}\)
= \(\frac{\sqrt{x}.\left(\sqrt{x}+2\right)+\sqrt{x}.\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)\(.\)\(\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\sqrt{4x}}\)
= \(\frac{x+2\sqrt{x}+x-2\sqrt{x}}{\sqrt{4x}}\)
= \(\frac{2x}{2\sqrt{x}}\)= \(\sqrt{x}\)
b) x = \(3-2\sqrt{2}\)=\(2-2\sqrt{2}+1\)= \(\left(\sqrt{2}-1\right)^2\)
Thay x = \(\left(\sqrt{2}-1\right)^2\) vào P ta được
P = \(\sqrt{\left(\sqrt{2}-1\right)^2}\)= \(\sqrt{2}-1\)