\(\frac{1-a\sqrt{a}}{1-\sqrt{a}}\)+\(\sqr...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
29 tháng 5 2019

Lời giải:

ĐK: \(a\geq 0; a\neq 1\)

Để cho đơn giản, đặt \(\sqrt{a}=x\). Khi đó:

\(P=\left(\frac{1-x^3}{1-x}+x\right)\left(\frac{1-x}{1-x^2}\right)^2\)

\(=\left(\frac{(1-x)(1+x)}{1-x}+x\right).\left(\frac{1-x}{(1-x)(1+x)}\right)^2=(1+x+x).\frac{1}{(1+x)^2}\)

\(=\frac{2x+1}{(x+1)^2}=\frac{2\sqrt{a}+1}{(\sqrt{a}+1)^2}\)

31 tháng 10 2018

Rút gọn bt:

Câu 1: a, \(\left(\sqrt{50}+\sqrt{48}-\sqrt{72}\right)2\sqrt{3}\)

b, \(\sqrt{25a}+2\sqrt{45a}-3\sqrt{80a}+2\sqrt{16a}\left(a\ge0\right)\)ư

Câu 2: Cho bt: P =\(\left(1+\frac{\sqrt{a}}{a+1}\right):\left(\frac{1}{\sqrt{a}-1}-\frac{2\sqrt{a}}{a\sqrt{a}+\sqrt{a}-a-1}\right)\)

a, Tìm ĐKXĐ . Rút gọn P 

B, Tìm x nguyên để P có gt nguyên

c, Tìm GTNN của P với a >1

Câu 3: Giair các pt 

a, \(\sqrt{\left(2x-1\right)^2}=4\)

b, \(\sqrt{4x+4}+\sqrt{9x+9}-8\sqrt{\frac{x+1}{16}}=5\)

1 tháng 12 2016

a/ \(\left(3-a\right)^2-\sqrt{\frac{180a^2}{5}}=a^2-6a+9-6\left|a\right|\)

Nếu \(a\ge0\) thì \(a^2-6a+9-6\left|a\right|=a^2-12a+9\)

Nếu \(a< 0\) thì \(a^2-6a+9-6\left|a\right|=a^2+9\)

b/ \(\sqrt{150}-3\sqrt{98}+2\sqrt{8}+3\sqrt{32}-5\sqrt{18}\)

\(=5\sqrt{6}-21\sqrt{2}+4\sqrt{2}+12\sqrt{2}-15\sqrt{2}\)

\(5\sqrt{6}-20\sqrt{2}=5\sqrt{2}\left(\sqrt{3}-4\right)\)

c/ Bạn viết lại đề nhé :)