K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(Q=\dfrac{\sqrt{x^3}-\sqrt{x}+2x-2}{\sqrt{x}+2}\)

\(=\dfrac{x\sqrt{x}-\sqrt{x}+2\left(x-1\right)}{\left(\sqrt{x}+2\right)}\)

\(=\dfrac{\sqrt{x}\left(x-1\right)+2\left(x-1\right)}{\sqrt{x}+2}=\dfrac{\left(x-1\right)\left(\sqrt{x}+2\right)}{\sqrt{x}+2}=x-1\)

\(P=\dfrac{2x-3\sqrt{x}-2}{\sqrt{x}-2}\)

\(=\dfrac{2x-4\sqrt{x}+\sqrt{x}-2}{\sqrt{x}-2}\)

\(=\dfrac{2\sqrt{x}\left(\sqrt{x}-2\right)+\left(\sqrt{x}-2\right)}{\sqrt{x}-2}=2\sqrt{x}+1\)

b: P=Q

=>\(x-1=2\sqrt{x}+1\)

=>\(x-2\sqrt{x}-2=0\)

=>\(x-2\sqrt{x}+1=3\)

=>\(\left(\sqrt{x}-1\right)^2=3\)

mà \(\sqrt{x}-1>=-1\) với mọi x thỏa mãn ĐKXĐ

nên \(\sqrt{x}-1=\sqrt{3}\)

=>\(\sqrt{x}=1+\sqrt{3}\)

=>\(x=\left(1+\sqrt{3}\right)^2=4+2\sqrt{3}\left(nhận\right)\)

18 tháng 3 2021

a, Ta có : 

\(P=\frac{2x-3\sqrt{x}-2}{\sqrt{x}-2}=\frac{2x+\sqrt{x}-4\sqrt{x}-2}{\sqrt{x}-2}\)sử dụng tam thức bậc 2 khai triển biểu thức trên tử nhé 

\(=\frac{\sqrt{x}\left(2\sqrt{x}+1\right)-2\left(2\sqrt{x}+1\right)}{\sqrt{x}-2}=\frac{\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\sqrt{x}-2}=2\sqrt{x}+1\)

\(Q=\frac{\left(\sqrt{x}\right)^3-\sqrt{x}+2x-2}{\sqrt{x}+2}=\frac{\sqrt{x}\left(x-1\right)+2\left(x-1\right)}{\sqrt{x}+2}\)

\(=\frac{\left(\sqrt{x}+2\right)\left(x-1\right)}{\sqrt{x}+2}=x-1\)

b, Ta có : \(P=Q\)hay \(2\sqrt{x}+1=x-1\Leftrightarrow-x+2\sqrt{x}+2=0\)

\(\Leftrightarrow x-2\sqrt{x}-2=0\Leftrightarrow x-2\sqrt{x}+1-3=0\)

\(\Leftrightarrow\left(\sqrt{x}-1\right)^2-3=0\Leftrightarrow\left(\sqrt{x}-1-\sqrt{3}\right)\left(\sqrt{x}-1+\sqrt{3}\right)=0\)

TH1 : \(\sqrt{x}=1+\sqrt{3}\Leftrightarrow x=\left(1+\sqrt{3}\right)^2=1+2\sqrt{3}+3=4+2\sqrt{3}\)

TH2 : \(\sqrt{x}=1-\sqrt{3}\Leftrightarrow x=\left(1-\sqrt{3}\right)^2=1-2\sqrt{3}+3=4-2\sqrt{3}\)

Vậy \(x=4+2\sqrt{3};x=4-2\sqrt{3}\)thì P = Q 

18 tháng 3 2021

んuリ イ giải pt vô tỉ không xét ĐK là tai hại :))

 \(P=\frac{2x-3\sqrt{x}-2}{\sqrt{x}-2}=\frac{2x-4\sqrt{x}+\sqrt{x}-2}{\sqrt{x}-2}\)

\(=\frac{2\sqrt{x}\left(\sqrt{x}-2\right)+\left(\sqrt{x}-2\right)}{\sqrt{x}-2}=\frac{\left(\sqrt{x}-2\right)\left(2\sqrt{x}+1\right)}{\sqrt{x}-2}=2\sqrt{x}+1\)

\(Q=\frac{\sqrt{x^3}-\sqrt{x}+2x-2}{\sqrt{x}+2}=\frac{\left(x\sqrt{x}-\sqrt{x}\right)+\left(2x-2\right)}{\sqrt{x}+2}\)

\(=\frac{\sqrt{x}\left(x-1\right)+2\left(x-1\right)}{\sqrt{x}+2}=\frac{\left(x-1\right)\left(\sqrt{x}+2\right)}{\sqrt{x}+2}=x-1\)

Để P = Q thì \(2\sqrt{x}+1=x-1\)( x ≥ 1 ; x ≠ 4 )

<=> \(x-2\sqrt{x}-2=0\)

<=> \(\left(\sqrt{x}-1\right)^2-3=0\)

<=> \(\left(\sqrt{x}-1-\sqrt{3}\right)\left(\sqrt{x}-1+\sqrt{3}\right)=0\)

<=> \(\orbr{\begin{cases}x=1+\sqrt{3}\\x=1-\sqrt{3}\end{cases}}\Rightarrow\orbr{\begin{cases}x=4+2\sqrt{3}\left(tm\right)\\x=4-2\sqrt{3}\left(ktm\right)\end{cases}}\)

Vậy với \(x=4+2\sqrt{3}\)thì P = Q

AH
Akai Haruma
Giáo viên
28 tháng 12 2023

Lời giải:

a.

\(B=\frac{2\sqrt{x}(\sqrt{x}-3)+\sqrt{x}(\sqrt{x}+3)-2x}{(\sqrt{x}+3)(\sqrt{x}-3)}=\frac{x-3\sqrt{x}}{(\sqrt{x}-3)(\sqrt{x}+3)}=\frac{\sqrt{x}(\sqrt{x}-3)}{(\sqrt{x}+3)(\sqrt{x}-3)}=\frac{\sqrt{x}}{\sqrt{x}+3}\)

b.

\(P=AB=\frac{\sqrt{x}-2}{\sqrt{x}}.\frac{\sqrt{x}}{\sqrt{x}+3}=\frac{\sqrt{x}-2}{\sqrt{x}+3}\)

Để $P<0\Leftrightarrow \frac{\sqrt{x}-2}{\sqrt{x}+3}<0$

Mà $\sqrt{x}+3>0$ nên $\sqrt{x}-2<0$

$\Leftrightarrow 0< x< 4$

Kết hợp với ĐKXĐ suy ra $0< x< 4$

Mà $x$ nguyên nên $x\in left\{1; 2; 3\right\}$

 

a: 


Sửa đề: \(P=\left(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}+\dfrac{3x+3}{9-x}\right)\cdot\left(\dfrac{\sqrt{x}-7}{\sqrt{x}+1}+1\right)\)

\(P=\left(\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)+\sqrt{x}\left(\sqrt{x}+3\right)-3x-3}{x-9}\right)\cdot\dfrac{\sqrt{x}-7+\sqrt{x}+1}{\sqrt{x}+1}\)

\(=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{x-9}\cdot\dfrac{2\sqrt{x}-6}{\sqrt{x}+1}\)

\(=\dfrac{-3\sqrt{x}-3}{\sqrt{x}+3}\cdot\dfrac{2}{\sqrt{x}+1}=\dfrac{-6}{\sqrt{x}+3}\)

b: P>=1/2

=>P-1/2>=0

=>\(\dfrac{-6}{\sqrt{x}+3}-\dfrac{1}{2}>=0\)

=>\(\dfrac{-12-\sqrt{x}-3}{2\left(\sqrt{x}+3\right)}>=0\)

=>\(-\sqrt{x}-15>=0\)

=>\(-\sqrt{x}>=15\)

=>căn x<=-15

=>\(x\in\varnothing\)

c: căn x+3>=3

=>6/căn x+3<=6/3=2

=>P>=-2

Dấu = xảy ra khi x=0

9 tháng 7 2021

`B=(1/(3-sqrtx)-1/(3+sqrtx))*(3+sqrtx)/sqrtx(x>=0,x ne 9)`

`B=((3+sqrtx)/(9-x)-(3-sqrtx)/(9-x))*(3+sqrtx)/sqrtx`

`B=((3+sqrtx-3+sqrtx)/(9-x))*(3+sqrtx)/sqrtx`

`B=(2sqrtx)/((3-sqrtx)(3+sqrtx))*(3+sqrtx)/sqrtx`

`B=2/(3-sqrtx)`

`B>1/2`

`<=>2/(3-sqrtx)-1/2>0`

`<=>(4-3+sqrtx)/[2(3-sqrtx)]>0`

`<=>(sqrtx+1)/(2(3-sqrtx))>0`

Mà `sqrtx+1>=1>0`

`<=>2(3-sqrtx)>0`

`<=>3-sqrtx>0`

`<=>sqrtx<3`

`<=>x<9`

a: \(Q=\dfrac{3x+3\sqrt{x}-3-x+1-x+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

\(=\dfrac{x-3\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}=\dfrac{\sqrt{x}-2}{\sqrt{x}+2}\)

b: Khi x=4+2căn 3 thì \(Q=\dfrac{\sqrt{3}+1-2}{\sqrt{3}+1+2}=\dfrac{-3+2\sqrt{3}}{3}\)

c: Q=3

=>3căn x+6=căn x-2

=>2căn x=-8(loại)

d: Q>1/2

=>Q-1/2>0

=>\(\dfrac{\sqrt{x}-2}{\sqrt{x}+2}-\dfrac{1}{2}>0\)

=>2căn x-4-căn x-2>0

=>căn x>6

=>x>36

d: Q nguyên

=>căn x+2-4 chia hết cho căn x+2

=>căn x+2 thuộc Ư(-4)

=>căn x+2 thuộc {2;4}

=>x=0 hoặc x=4(nhận)

8 tháng 4 2021

a, Ta có : \(x=4\Rightarrow\sqrt{x}=2\)

\(\Rightarrow A=\frac{2+1}{2+2}=\frac{3}{4}\)

Vậy với x = 4 thì A = 3/4 

b, \(B=\frac{3}{\sqrt{x}-1}-\frac{\sqrt{x}+5}{x-1}=\frac{3\left(\sqrt{x}+1\right)-\sqrt{x}-5}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(=\frac{3\sqrt{x}+3-\sqrt{x}-5}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{2\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{2}{\sqrt{x}+1}\)( đpcm )

27 tháng 11 2018

\(Q=\frac{\sqrt{x}\cdot\left(\sqrt{x}-1\right)\cdot\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-\frac{\sqrt{x}\cdot\left(2\sqrt{x}+1\right)}{\sqrt{x}}+\frac{2\left(\sqrt{x}-1\right)\cdot\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\)

\(Q=x-\sqrt{x}-2\sqrt{x}-1+2\sqrt{x}+2\)

\(Q=x+1\)

Không thể tìm được GTLN hay GTNN của Q.

b)

   \(\frac{3x+3}{\sqrt{x}}=3\sqrt{x}+\frac{3}{\sqrt{x}}\)

Để \(\frac{3Q}{\sqrt{x}}\) nguyên thì \(\frac{3}{\sqrt{x}}\)nguyên hay \(\sqrt{x}\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

Vì \(\sqrt{x}\)dương nên \(\sqrt{x}\in\left\{1;3\right\}\)

Vậy x=1, x=9 là các giá trị cần tìm

29 tháng 12 2023

a) ĐKXĐ: \(x>0;x\ne4\)

\(Q=\left(\dfrac{\sqrt{x}-1}{\sqrt{x}-2}-\dfrac{\sqrt{x}+2}{\sqrt{x}+1}\right):\left(\dfrac{1}{\sqrt{x}}-\dfrac{1}{\sqrt{x}+1}\right)\)

\(=\left[\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}-\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\right]:\dfrac{\sqrt{x}+1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

\(=\dfrac{x-1-\left(x-4\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}:\dfrac{1}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

\(=\dfrac{3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\cdot\sqrt{x}\left(\sqrt{x}+1\right)\)

\(=\dfrac{3\sqrt{x}}{\sqrt{x}-2}\)

b) Để biểu thức \(Q\) có giá trị âm thì \(\dfrac{3\sqrt{x}}{\sqrt{x}-2}< 0\)

\(\Rightarrow\sqrt{x}-2< 0\) (vì \(3\sqrt{x}>0\forall x>0;x\ne4\))

\(\Leftrightarrow\sqrt{x}< 2\Leftrightarrow0\le x< 4\) 

Kết hợp với điều kiện xác định của \(x\), ta được: \(0< x< 4\)

\(\text{#}\mathit{Toru}\)

29 tháng 12 2023

đk là 0<x<4 thì ở kết quả <=> em thêm không âm ở trước nữa hoặc => x<4 nha.